材料原子系统多尺度耦合建模及算法设计

来源 :北京科技大学 | 被引量 : 0次 | 上传用户:liuhaoyingying
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
材料科学和工程的许多问题,如材料断裂或位错等,其仿真过程中需要用微观离散的原子模型来保证准确度。但由于原子数量巨大,难以直接求解。因此,迫切需要结合反映宏观连续性的偏微分方程,建立一种微观/宏观描述相结合的可计算模型来较精确地捕获材料特性。本论文研究晶格结构材料的多尺度耦合模型,它是一个将微观模型/宏观模型(原子/连续或量子/原子)耦合在一起的典型的多尺度计算模型或方法。在过去十年中,多尺度方法已经成为发展迅猛且应用广泛的材料模拟方法,并且吸引了越来越多的应用和计算数学家的研究兴趣。本论文首先针对已有的二维一般多体作用势和一般界面的相容原子/连续模型进行严格的后验误差分析,根据后验误差估计子设计针对原子/连续耦合模型的自适应算法,并将该自适应方法推广到量子/原子耦合模型中,接着,考虑一维动态原子模型的粗粒化近似的一致性。本文主要创新性工作如下:1)对原子/连续耦合模型进行后验误差分析,导出严格的后验误差估计子。原子/连续耦合模型以实现精度与效率的最优平衡为目标,其中,自适应是这类方法实现的关键。本研究对原子/连续耦合模型的残量,稳定系数以及误差界进行了严格的后验误差分析;设计和实现了二维情况下基于后验误差估计的网格自适应算法。自适应算法的收敛率和先验误差分析的收敛率一致,是准最优的。在数值实验过程中,后验误差估计子的计算与耦合模型的应力张量息息相关。本研究通过引入无散张量空间对原子区域和连续区域的界面处的应力张量进行校正,从而保证的估计子的有效性。2)将后验误差分析及相应的自适应算法推广到量子(量子力学)与原子(分子力学)耦合方法中。量子/原子耦合方法被广泛使用在晶格缺陷的仿真中。本研究构造基于残量的后验误差估计指示子,证明所构造的误差指示子的实用性(真实近似误差的上界)的同时,通过采样技术提高了计算效率。基于误差指示子和Dorfler标记策略,设计关于晶格缺陷的二维量子/原子自适应算法并在数值实验中展示了它的有效性。3)研究一维动态原子模型的粗粒化近似。作为上述静态研究的延续,本部分浅尝动力学模型的研究。本研究旨在通过粗粒化近似对网格尺寸的一致性,对近似方法的功效进行评估。由于中心差分的空间离散模型存在着频率与网格尺寸相关的特征震荡,本研究采用了粘性耗散测量以及空间平均测量的方式来降低震荡的影响。收敛性分析中,本研究将粗粒化模型的数值解与宏观的连续模型(混合型的非线性波动方程)的解进行比较,以观察此粗粒化近似对宏观的材料特征的捕抓。除此之外,动态模型的稳定性也是本研究的一个部分。一维动态原子模型由于局部的较大形变引起的缺陷的宏观的连续模型的解将通过相关黎曼问题的研究得到。
其他文献
目的探讨转录因子叉头框蛋白O3a(FOXO3a)对前列腺癌细胞上皮间质转化(EMT)的影响及其作用机制。方法采用逆转录聚合酶链式反应(RT-PCR)检测正常前列腺上皮细胞RWPE-1和前列腺癌细胞LNCaP、DUl45、PC-3中FOXO3a表达水平,选择FOXO3a表达最低的前列腺癌细胞系转染pcDNA-FOXO3a、pcDNA-NC构建FOXO3a过表达细胞系(pc-FOXO3a)和阴性对照(
金属材料与人类文明发展和社会进步关系密切,已经成为日常生产生活中重要的物质基础之一。为了提升材料的综合性能,需要对材料进行强化处理。弥散强化通过在基体中加入或生成硬质的第二相颗粒来强化材料。强化颗粒具有良好的热稳定性和化学稳定性,能够有效钉扎晶界,阻碍位错运动,抑制晶粒长大,使材料具有良好的室温高温强度。本文围绕氧化物颗粒在制备和焊接过程中的变化,研究了氧化物颗粒对微观组织演变和力学性能的贡献。论
不锈钢/碳钢层合板,兼具不锈钢的耐热耐腐蚀与美观性和碳钢的性价比优势,因而在石油化工、食品餐饮、交通运输、兵器等行业以及电梯、防盗门、金属装饰、五金器具等领域具有广阔应用前景。热轧复合已经成为制备不锈钢/碳钢金属层合板带的主要方法,但对于其轧制复合机理的认识仍是多种解释假说并存,尚不完善。其次,能否在再结晶温度以下实现不锈钢/碳钢层合板带温轧复合甚至冷轧复合,也是值得研究的问题。本文针对304不锈
传统钴基高温合金具有优异的耐热腐蚀和抗热疲劳性能,但它的高温强度比不过依靠γ’-Ni3Al沉淀强化的镍基高温合金,从而限制了其在航空发动机和燃气轮机等热端部件上的进一步应用。然而,现有镍基单晶高温合金的使用温度已接近合金的熔点,要继续提高其使用温度非常困难。近年来,在Co-Al-W三元体系中发现的γ’-Co3(Al,W)为新型钴基高温合金的发展开辟了新的道路。Co的熔点比Ni高40℃,新型钴基高温
在改革开放的过程中,我国的综合实力得到了很大的发展,特别是在我国的建筑业中取得了惊人的突破,社会各界建筑物标准的要求也在增加。在此过程中,建设工程只有安全文明施工,才能从根本上保证建设工程的稳定运行。本文首先分析了当前建设项目安全文明施工管理中存在的问题,对存在的问题进行了分析和调查,并提出了相应的建议。
TiAl合金具有低密度、高强度、优异的阻燃能力、优良的抗蠕变性能和抗疲劳性能等优点,已经成为航空航天领域最具竞争力的轻质结构材料之一。但TiAl合金热变形能力差,室温塑性低以及在750℃以上时抗氧化性能不足等制约了该合金的实际工程化应用。本文通过添加β相稳定元素(Mo)制备出高温时含一定量bcc结构β相的TiAl合金,提高了其热变形能力,同时通过循环热处理除去β相在低温时的有序B2相,改善了其服役
近年来,大自旋系统的磁性是量子多体系统中一个备受关注的研究领域。固体材料中的大自旋通常由原子中未配对的电子通过洪特规则耦合形成,另外一个可以实现和模拟大自旋的是光晶格中的超冷原子系统。一些固体电子材料中的强关联效应,例如巡游铁磁性、Mott转变等,在大自旋冷原子系统中很快被重新关注和深入研究了。正是在这样的背景下,本论文在大自旋系统中重新审视和深入研究了 Anderson磁性杂质和Heisenbe
以石墨烯为代表的二维材料因其高迁移率、高电导率等优异性质而备受人们关注。二维材料可薄至原子级,是高集成、高性能和低能耗的下一代电子器件的理想材料,有望替代硅基半导体材料。自旋电子学以实现高效、快速和低能耗地产生、操作和探测自旋为目标。伴随着外尔半金属,过渡金属硫化物(TMDC)等一系列新型二维材料的相继发现,许多新奇的物理性质也被陆续报道,范德华异质结这一崭新的物理模型也进入人们的视野。它同时兼具
Al-Cr-Fe-Si合金系是一个极具特色的十次准晶形成体系,其晶体结构上的特点跟广泛研究的Al-Co-Ni等十次准晶系完全不同。已有研究指出Al-Cr-Fe-Si合金系中存在新型十次准晶、多种复杂准晶近似相以及一类同时具有传统晶体材料的周期平移对称性和准晶体的准周期性的新型固体物态。然而对该合金系中大单胞复杂准晶近似相及相关的结构缺陷的详细研究,特别是原子级别的研究还非常有限。对准晶近似相结构的
本文以土壤中广泛存在的硝酸盐还原菌Bacilluslicheniformis为对象,研究了其对X80管线钢腐蚀行为的影响。首先,应用电化学测试、失重试验以及形貌与成分分析技术研究了中性土壤模拟液中X80钢在B.licheniformis一个生长周期内的腐蚀行为规律与演变过程;其次,通过将碳饥饿条件与氧化还原荧光探针相结合,设计了一种新颖的胞外电子传递检测方法,同时辅以失重试验与电化学测试,从生物能