【摘 要】
:
金属材料与人类文明发展和社会进步关系密切,已经成为日常生产生活中重要的物质基础之一。为了提升材料的综合性能,需要对材料进行强化处理。弥散强化通过在基体中加入或生成硬质的第二相颗粒来强化材料。强化颗粒具有良好的热稳定性和化学稳定性,能够有效钉扎晶界,阻碍位错运动,抑制晶粒长大,使材料具有良好的室温高温强度。本文围绕氧化物颗粒在制备和焊接过程中的变化,研究了氧化物颗粒对微观组织演变和力学性能的贡献。论
论文部分内容阅读
金属材料与人类文明发展和社会进步关系密切,已经成为日常生产生活中重要的物质基础之一。为了提升材料的综合性能,需要对材料进行强化处理。弥散强化通过在基体中加入或生成硬质的第二相颗粒来强化材料。强化颗粒具有良好的热稳定性和化学稳定性,能够有效钉扎晶界,阻碍位错运动,抑制晶粒长大,使材料具有良好的室温高温强度。本文围绕氧化物颗粒在制备和焊接过程中的变化,研究了氧化物颗粒对微观组织演变和力学性能的贡献。论文首先采用机械合金化法成功制备出氧化物弥散强化(oxidedispersion strengthen,ODS)FeCoNi基固溶体合金,纳米氧化物颗粒均匀弥散分布于基体中,材料拉伸性能优于部分弥散强化钢。然后采用搅拌摩擦焊实现ODS纯铝及2024铝合金的有效连接,接头强度系数分别达到母材98%和85%。该研究对于生产大型结构件,扩大ODS高强铝合金应用范围具有重要意义。通过对FeCoNi基固溶体合金不同制备阶段工艺研究确定了主要实验参数并成功在基体中制备出平均尺寸为34 nm的Y2Ti2O7颗粒。亚微米级晶粒及纳米颗粒使得该合金在室温及700℃下均具有较高的压缩性能。采用不同氧化物颗粒对FeCoNi合金进行强化。研究发现热轧过程中FeCoNi合金内部出现γ取向线织构向α取向线织构转变,纳米Y2O3颗粒能够抑制转变过程,粒径更小、密度更高的Y2Ti2O7颗粒进一步增强了抑制作用,两种颗粒均与基体呈现半共格结构。单斜结构的Y2O3颗粒是由立方结构的Y2O3颗粒在热轧过程中通过相变转化而来。高温短时间退火可有效降低纳米相尺寸。FeCoNi-1.5Y2O3和FeCoNi-1.2Ti-1.5Y2O3合金中力学性能的提升主要来源于基体内部细化的晶粒和高密度纳米氧化物颗粒。采用搅拌摩擦焊(friction stir welding,FSW)技术成功实现冷轧态弥散氧化纯铝的焊接。研究发现母材区及焊核区均为γ-Al2O3颗粒。氧化铝颗粒为近球状,数密度分别为6.25×1019/m3和7.49× 1019/m3。中子小角散射结果表明母材区颗粒平均粒径为69.3 nm。焊核区颗粒尺寸有所降低,氧化铝体积分数为 2.66%。通过商用1050纯铝和ODS1050纯铝、商用2024和ODS2024铝合金相同工艺参数下对照实验,研究了氧化物颗粒焊接前后变化以及对接头再结晶过程的影响。结果表明1050纯铝和ODS1050纯铝焊核区发生了连续动态再结晶。ODS1050纯铝中A12O3颗粒诱导热力影响区发生局部非连续动态再结晶。ODS2024铝合金焊核区为连续动态再结晶。焊核区、热影响区织构类型与热影响区基本相同,析出相和氧化物颗粒能有效保持组织稳定。ODS1050铝合金母材区和焊核区弥散着纳米Al2O3颗粒。商用2024铝合金中强化相为S相和θ相,焊接过程中两相发生了回溶和再析出。ODS2024中母材区为复杂的Al1.756Mn0.182Fe0.062(O(SiO4))颗粒和θ相。焊接过后,复杂颗粒保持稳定,θ相固溶并析出为S相。商用1050和ODS1050纯铝接头焊核区和整体强度均与母材相当,ODS2024铝合金中接头整体强度达到母材85%,以上结果表明FSW技术能有效实现铝基复合材料的连接。
其他文献
海洋环境下钢筋腐蚀问题严重,导致混凝土结构的耐久性和安全性下降。本文以低合金钢筋为研究对象,以合金元素Cr和氯敏阻锈剂对钢筋长期腐蚀行为的影响机理为研究目标,采用自然环境挂片实验、现代物理表征技术、电化学检测方法、第一性原理模拟计算、机器学习等手段,研究了含Cr低合金高强钢筋在微溶液中的腐蚀电化学机理及其在自然环境中的长期腐蚀行为、氯敏阻锈剂对高强钢筋的长期缓蚀行为和机制、Cr和氯敏阻锈剂对高强钢
锌及锌合金由于具有良好的生物相容性和可降解性而成为新一代可降解血管支架材料。但是,由于缺乏严格的测试标准,锌及锌合金的降解机理尚未达成共识。液体环境是影响金属材料腐蚀行为的一个重要因素。体外测试时,模拟体液中的无机盐及有机成分(如蛋白质)的差异会使材料表现出不同的腐蚀行为。因此,围绕液体成分对腐蚀的影响这一问题,利用电化学测试和浸泡实验研究了纯锌在不同模拟体液中的腐蚀行为,并研究了腐蚀对力学性能的
多形性转变是一类只发生结构转变而成分不变的相变。研究合金的多形性转变,不仅可以加深对其相结构的理解,而且可以指导合金的组织与性能调控。压力是影响多形性转变的主要因素之一,在已报道的合金材料压力下的多形性转变研究工作中,主要以单主元固溶体合金为主。对于多主元合金的多形性转变以及与组元之间的关系研究较少,仍有待进一步探讨。高熵合金,通过混合多主元带来最大化混合熵的成分设计理念,可以获得单相固溶体结构。
传统高锰钢(Hadfield钢)在室温下能获得单相奥氏体,具有优良的加工硬化能力和抗冲击能力,因此广泛用作冲击载荷下的耐磨材料。然而较低的屈服强度和初始硬度,导致材料在低冲击载荷下不能完全发挥其耐磨性就发生塑性变形,降低了使用寿命。本文设计出一种轻质超高锰钢(Fe-31.6Mn-8.8A1-1.38C),具有低密度、高屈服强度、高初始硬度、良好冲击韧性等特点,适用于低冲击载荷下的磨损条件。通过研究
膏体充填技术是金属矿绿色开采的重要发展方向,深锥浓密是膏体充填的关键技术之一,全尾砂在深锥浓密机给料井内快速形成絮团是实现全尾砂料浆深度浓密的前提。论文以给料井内全尾砂絮凝行为作为研究对象,以絮凝过程的定量描述与工艺参数的优化为目的,主要研究工作包括:1)研究了全尾砂固体质量分数、絮凝剂单耗、絮凝剂溶液浓度和剪切速率等因素对全尾砂絮凝行为的影响,以絮团平均加权弦长峰值、絮凝的全尾砂料浆的初始沉降速
位错运动是晶体材料塑性变形的主要微观机制。然而,现有理论在以下三个与位错运动相关的问题上,尚存在明显欠缺。首先,晶格阻力作为位错运动最基本的阻力,它的理论计算结果与实验相比,一直存在高估问题。其次,位错扫过滑移面后,晶格释放的弹性能对位错进一步运动的影响,一直未被关注。第三,晶体的韧脆转变现象尚缺乏与直接的实验观察相对应的统一理论。为此,本文通过建立新模型对位错运动的晶格阻力、位错运动辐射弹性波的
FeCrAl不锈钢具有优异抗高温氧化性能和较低热膨胀系数,是生产汽车尾气净化器载体的理想材料。但由于FeCrAl不锈钢中Al含量较高,生产中凝固成型控制困难,锻造轧制易开裂。这严重制约了我国汽车尾气净化器的研发和生产。为此,本文主要从以下五个方面对FeCrAl不锈钢相析出及形变机理进行了研究:(1)平衡凝固相变研究;(2)非平衡凝固过程AlN的析出机制研究;(3)α’相析出行为研究;(4)动态再结
充填采矿法由于损失贫化低、高度利用尾砂等固废和有效控制采场地压等优势在深部开采过程中得到广泛应用,这也与国家当前大力推进的绿色矿山建设目标相契合。对于采用充填采矿法的深部矿山来说,热害问题突出,而目前对于胶结充填体的水化产热及其对深部热害的影响研究较少,因此研究胶结充填体水化产热变化及含充填体热源掘进巷道通风时的风温变化规律对深部需冷量计算和热环境的改善至关重要。本文通过实验室相似材料实验、理论分
建筑施工过程环节众多,错综复杂,安全隐患往往埋藏其中,在建筑施工安全监督管理工作中,如果任何一个安全监督管理程序不符合安全规范,都可能引发安全生产事故,造成人员和财产损失。本文对建筑施工安全监督管理工作中出现的问题进行分析,找出关键点,并提出针对性的改进对策。
目的探讨转录因子叉头框蛋白O3a(FOXO3a)对前列腺癌细胞上皮间质转化(EMT)的影响及其作用机制。方法采用逆转录聚合酶链式反应(RT-PCR)检测正常前列腺上皮细胞RWPE-1和前列腺癌细胞LNCaP、DUl45、PC-3中FOXO3a表达水平,选择FOXO3a表达最低的前列腺癌细胞系转染pcDNA-FOXO3a、pcDNA-NC构建FOXO3a过表达细胞系(pc-FOXO3a)和阴性对照(