【摘 要】
:
量子计算和量子通信离不开量子比特的实现、操作和控制,而量子比特广义上对应于二能级量子系统。光子作为量子计算中实现处理信息的有效系统,它传播快,不与环境相互作用且操纵简单。要实现和操纵量子比特,可以求助于双阱势系统。例如,基于双阱势的量子比特已经被超导电路(SQUID)证明。因此我们建立了一种新的光学双阱势系统,然后研究这种光学双阱势系统存在的量子力学效应,即光子隧穿,最终为光量子比特的物理实现提供
论文部分内容阅读
量子计算和量子通信离不开量子比特的实现、操作和控制,而量子比特广义上对应于二能级量子系统。光子作为量子计算中实现处理信息的有效系统,它传播快,不与环境相互作用且操纵简单。要实现和操纵量子比特,可以求助于双阱势系统。例如,基于双阱势的量子比特已经被超导电路(SQUID)证明。因此我们建立了一种新的光学双阱势系统,然后研究这种光学双阱势系统存在的量子力学效应,即光子隧穿,最终为光量子比特的物理实现提供一种新的实现方式。本文首先介绍了光腔与光子量子信息的基本理论,然后建立了基于光腔-波导-光腔(CWC)的量子理论模型,最后对CWC结构进行优化分析以及研究光学双阱势的应用。本文研究的主要工作如下:1)建立CWC模型,通过截止波导连接两个光学谐振腔,即光腔-波导-光腔结构,构造了一种新的光学双阱势系统,研究其内部的电磁场分布,建立量子理论模型。我们证明了由于光子通过截止波导的光子隧穿效应而造成的对称性破缺和能级分裂,从而形成一种有效的光学二能级光子系统。此外,我们通过仿真软件FDTD Solutions模拟分析了CWC结构的频谱分布,与我们的理论结果相比较,证明了我们理论模型的可行性。2)分析了CWC结构的优化与光学双阱势系统的应用研究。分析CWC结构参数的调整对光子频谱分布的影响,包括改变CWC结构长度、窄边尺寸以及CWC内填充不同的介质的方式,并且通过FDTD Solutions的仿真与理论结果相比较,对我们的理论结果进行验证,得出结论:将长度延长将会使对称解与反对称频率解的差值进一步减小,相邻的两对之间,频率间距进一步增大,即这种光学双阱势的势垒将会变小,光子隧穿变得更容易;对于非介质连续性结构,入射波为TE10模,CWC窄边尺寸对我们的结构没有影响,这有利于操控CWC结构中的光子;填充不同介质时,理论与仿真结果相符合,验证了我们理论的可行性。此外,通过二能级光子系统与Λ型原子系统的耦合(即双模拉曼动力学),提出了一种新的光学量子比特的物理实现。与传统的模式相反,在我们的研究中,两个场模式携带量子比特,而原子作为一个辅助态,并且这两个模式并不对应两个不同类型的光子,而是对应于同一个光子的两个可能的量子态。最后,基于CWC结构光量子比特的物理实现,设计了一种新的量子网络节点,这种方案对失谐量没有限制,光子与原子之间的耦合可以很强。
其他文献
随着我国经济的快速发展,有色金属的需求量越来越大,但是随着易开采的矿区大量减少,硫化镍矿的储量和品位逐渐降低,而铜和镍的需求量却越来越大。因此,选择合适的选矿工艺提高矿产资源的利用率变得尤为重要。我国90%以上的有色金属都采用泡沫浮选法提纯。泡沫浮选是一种基于矿石表面物理化学性质差异的矿质分离选矿方式,通过不同矿物的物理化学性质不同产生的矿物可浮性不同这种性质将不同矿物分离。本文依托于电子科技大学
随着微波无线通信的需求和应用越来越广,通信系统迎来对巨量数据的传输和处理的挑战。光载无线通信(Radio-over-Fiber,ROF)技术是解决这些问题的主要技术之一。作为ROF技术的核心组成部分,电光调制器的线性度会严重影响系统的信号传输、处理以及无杂散动态范围(Spurious-Free Dynamic Range,SFDR)。同时,作为新型的二维材料,石墨烯凭借优秀的电光特性,在电光调制器
回音壁模式(WGM)的光学微腔具有极高的品质因数和极小的模式体积,在激光器、高灵敏度传感器、窄线宽滤波器等光电器件应用方面都十分具有应用潜力,且随着光电器件朝着小型轻便化发展,基于回音壁模式微腔的光电器件因其能同时保证性能和小体积的要求受到了广泛关注。本文首先介绍了回音壁模式微腔的理论分析及应用发展,其次提出了回音壁模式微球腔的两种实验室制备方法、两种品质因数Q测量方法:常用的可调谐激光器波长扫描
碰撞检测在CAD/CAM、运动规划和虚拟制造等领域具有广泛的应用,能精确检测到物体之间的碰撞和干涉现象并返回碰撞信息。随着计算机的性能、数值建模和模拟仿真技术的不断发展,计算机辅助设计技术已被广泛应用到微波管的设计和制造过程中,能够显著提高制管效率、降低返工风险和优化仿真的性能。在微波管仿真环境中,研究模型之间的碰撞检测问题对改进微波管的建模设计和装配细节具有重要的指导作用,能够确保微波管组件设计
在过去的几十年里,随着生活质量的不断提高,人们对于健康问题愈发关注。作为疾病诊断的主要技术手段,生物医学影像技术也得到迅猛的发展。包括纯光学成像、超声成像、光声成像在内的新型医学影像技术的成熟,为基础脑科学研究提供了新的途径,允许我们能够更全面的了解大脑的结构性和功能性信息。尤其是随着长期成像窗口的提出,允许我们对于慢性脑疾病的发生和发展情况进行长期监控,更好的指导诊断和治疗策略。其中,光声成像技
与传统微波滤波器相比,微波光子滤波器(MPF)具有带宽大、抗电磁干扰能力强等优点,而且在高频段具有可调谐范围大,滤波器的形状和带宽可重构等特点。由于受激布里渊散射(SBS)可以激发带宽极窄的增益谱和损耗谱,使得基于SBS的MPF具有极高的分辨率,通过精确设计、调控泵浦光,还可实现滤波器带宽和通带形状的灵活重构,因此研究基于SBS的MPF具有重要意义。本论文主要对基于SBS的MPF及其在光电振荡器(
光学相干层析成像(Optical Coherence Tomography,OCT)是一种基于光学低相干原理的高分辨率无损检测技术,常用于生物医学成像和工业无损检测领域。传统的谱域OCT(Spectral domain OCT,SD-OCT)系统成像速度和相位稳定性受限于机械扫描,本文提出了基于线光源照明成像的并行SD-OCT系统。并行SD-OCT系统无需任何机械扫描,利用面阵CMOS相机和线光源
超宽带(Ultra-wideband,UWB)系统因其高定位精度、低功率消耗以及高传输速率等优势,在学术界得到了广泛的关注与研究。其中的射频前端电路作为UWB系统的关键组成部分也成为了学术界研究的热点领域。本文针对UWB通信系统射频前端中的超宽带双向放大器进行了研究,设计实现了一款覆盖3.1-10.6 GHz的超宽带双向放大器芯片。论文在放大器带宽拓展研究的基础之上,采用负反馈带宽拓展技术和宽带噪
微型扑翼飞行器(FWMAV)由于在低雷诺数环境及非定常流体中的良好飞行性能使其在小尺度时相比固定翼和旋翼飞行器拥有更多优势,当前对于微型扑翼飞行器的成功研究主要集中在两翼仿鸟微型扑翼机上,而相关研究表明四翼对拍扑翼可以产生更多且更稳定的升力,机身起伏波动更小,更加适合搭载视觉传感器、图像视频传输设备等,具有更大的飞行载荷、更好的飞行能力及更复杂的任务执行能力。本文在前人研究基础上,受自然界飞行生物
随着现代通信网络的发展,自由空间光通信(free space optical communication,FSO)作为一种户外无线通信技术,在通信领域具有广阔的前景,在现代通信中扮演着越来越重要的角色。当今,自由空间光通信可以实现每条数据链路400Gbp的高数据速率,为在不能快速安装光纤电缆的地方实现高带宽数据传输,提供了非常有吸引力的解决方案。在自由空间光通信系统中,光学天线很大程度上决定了通信