论文部分内容阅读
本文制备了FeCl3-AICl3-TiCl4/AC催化剂,将其应用于1,2-二氯丙烷催化脱氯制丙烯的反应中。采用固定床反应器,考察了不同反应工艺条件对催化剂活性的影响,通过XRD、BET和SEM等方法对催化剂进行了表征。本文还考察了1,2-二氯丙烷分别在NaOH水溶液、NaOH醇溶液中发生消除反应制得1-氯丙烯。采用高压釜反应器,考察了不同反应工艺条件对消除反应的影响。一、1,2-二氯丙烷催化脱氯反应本文以FeCl3、AlCl3、TiCl4为活性组分,活性炭为载体,采用浸渍负载法制备了FeCl3-AlCl3-TiCl4/AC催化剂,并通过XRD、SEM、BET等手段对其进行表征。从XRD和SEM谱图中得出,活性炭负载金属氯化物后,石墨特征衍射峰仍然明显存在,说明金属氯化物均匀负载在活性炭表面,并未对活性炭的石墨结构造成破坏。BET结果表明:FeCl3-AlCl3-TiCl3/AC催化剂的比表面积为1081.4m2/g,孔体积0.23cm3/g,催化剂的孔结构以微孔为主,含有部分中孔。从NH3-TPD谱图中可以看出该催化剂存在较多的弱酸位以及少量的中酸位。实验考察了FeCl3-AlCl3-TiCl4/AC催化剂对1,2-二氯丙烷脱氯反应的影响。结果表明:当温度处于250~300℃时,FeCl3-AlCl3-TiCl4/AC催化剂主要催化1,2-二氯丙烷脱氯化氢生成1-氯丙烯。当温度高于350℃时,催化剂主要催化1,2-二氯丙烷脱氯气生成丙烯。两者的变化趋势相反,总选择性在91%左右。在低空速下,FeCl3-AlCl3-TiCl4/AC催化剂主要催化1,2-二氯丙烷脱氯气生成丙烯,随着空速的增加丙烯的选择性随之降低。当反应温度为460℃,质量空速为0.6h-1时,FeCl3-AlCl3-TiCl4/AC催化剂对1,2-二氯丙烷的催化活性最高,1,2-二氯丙烷的转化率大于99%,丙烯的选择性为87.9%。二、1,2-二氯丙烷碱性消除反应本文以1,2-二氯丙烷碱性消除脱氯化氢制备1-氯丙烯为探针,采用高压釜反应装置,考察了不同溶剂、反应温度、原料摩尔比等因素对消除反应的影响。1、以1,2-二氯丙烷为原料,将其与NaOH水溶液混合,在表面活性剂的作用下发生消除反应制备了1-氯丙烯。最佳反应条件为:反应温度为150℃,NaOH和1,2-二氯丙烷摩尔比为1.1:1,NaOH摩尔浓度为12mo1/L、以十六烷基三甲基溴化铵为表面活性剂,其用量为1,2-二氯丙烷的0.5wt%,反应时间为2h,1,2-二氯丙烷的转化率可达94.7%,1-氯丙烯的选择性为69%。2、以1,2-二氯丙烷为原料与NaOH乙醇溶液共热发生消除反应。最佳反应条件为:反应温度为80℃,NaOH和1,2-二氯丙烷摩尔比为1.1:1,无水乙醇与1,2-二氯丙烷的质量比为1.85:1、反应时间为1h,1,2-二氯丙烷的转化率可达97.5%,1-氯丙烯的选择性为57.7%。3、以1,2-二氯丙烷为原料与NaOH甲醇溶液共热发生消除反应。最佳反应条件为:反应温度为90℃,NaOH和1,2-二氯丙烷摩尔比为1.4:1,无水甲醇与1,2-二氯丙烷的质量比为1.34:1、反应时间为0.5h,1,2-二氯丙烷的转化率可达96.2%,1-氯丙烯的选择性为63.2%。实验结果表明:进攻试剂的碱性越强和/或浓度越大、反应温度越高、溶剂的极性越小越有利于消除反应。与醇作溶剂相比,水作为溶剂的优点是成本较低,1-氯丙烯的选择性相对最高。水作溶剂缺点是反应能耗高,需添加表面活性剂,产生大量的氯化有机废水造成环境污染。与水作为溶剂相比,醇作为溶剂时产物分离后醇溶剂可重复使用。与乙醇作为溶剂相比,甲醇作为溶剂时1-氯丙烯的选择性较高,且甲醇的价格低于乙醇。综合考虑,1,2-二氯丙烷在NaOH甲醇溶液中反应效果最佳。