论文部分内容阅读
本文从一个新的角度,即以铁磁材料的磁特性和应力耦合关系为核心,研究钢结构构件应力检测问题,目的在于解决钢结构磁力耦合应力检测所涉及的基本原理、理论依据、磁力学模型、应用技术、实现的关键技术等问题,从而把这种“磁”法检测技术应用到钢结构工程的应力检测中来。研究得到以下结论: (1) 依据铁磁学基础理论分析了应力对磁畴及磁畴壁的影响机理,指出了应力的存在改变了磁畴的结构,引起了畴壁的移动和磁畴磁矩的转动,使得畴壁能以及畴壁厚度发生了改变,从而使铁磁材料的磁特性发生了改变,其技术磁比曲线在不同应力下呈现出不同的特征。通过测试铁磁材料磁特性的变化,可以测出构件的应力。指明了实施土木建筑钢结构应力检测的关键在于解决应力对钢构件磁参量的影响关系,即建立钢结构材料磁力效应本构关系。 (2) 对钢结构材料磁力学模型进行研究,提出了钢结构拉压杆磁力耦合本构关系表达式,该本构关系揭示了钢结构受力构件的磁性变化与应力之间的函数关系,可反映磁力特性的传递函数关系。 (3) 在磁力耦合场隋况下提出了耦合参数A,该参数考虑了力磁耦合作用,并在试验的基础上,采用正交试验的数值回归分析方法,得到了耦合场参数经验公式。显著性分析表明,应力对耦合参数A的影响比外磁场大,这对钢结构拉压杆磁力耦合本构关系的简化与应用非常有意义。 (4) 针对建筑钢结构中常用的Q235钢拉压杆试件进行了磁力耦合试验研究,寻找出了应力对Q235钢磁滞回线影响的变化规律,建立了不同外磁场下Q235钢拉压杆应力与磁导率关系试验结果图。确定出了最佳的测试激励外磁场区间。Q235钢拉压杆的磁导率受应力和外磁场两个参数变化的影响,根据试验数据结果,采用正交试验的数值回归分析方法,得到了磁导率随应力和外磁场两个变量的双参数回归计算公式,由该回归公式的计算结果,建立了磁导率随应力和外磁场变化而变化的三维对应关系图。显著性分析表明,外磁场变化对磁导率的影响比应力大。计算结果与试验结果吻合较好。 (5) 使用理论建立的本构关系,代入耦合场参数,得到了不同外磁场和不同应力下的H-B关系模型,用ANSYS有限元程序进行计算。通过设定跑道型线圈,设定线圈匝数,由线圈通电流产生磁场,钢杆件置于感生磁场中被磁化加载的计算方法,得到了不同外磁场和不同应力条件下的磁导率计算结果。分析了不同的线圈匝数产生的外磁场的大小,计算表明在试件条件下线圈8000匝时的感生磁场已经容纳了最佳的测试外磁场区间。分析比较表明,理论计算、试验结果与有限元计算得到的应力对磁导率影响的变化规律一致,数据符合较好,说明采用这种有限元计算的方法是可行的。在确定本构关系的条件下,采用这种模拟计算方法,计算结果可