论文部分内容阅读
随着常规原油的不断开采,稠油在石油资源中的地位和作用日益增大。但常用的稠油集输工艺基本都是基于稠油的整体降黏,因此处理过程中必然存在能耗与运行费用高、加剂或掺水/稀油量多、处理量大等问题。在微气泡减阻理论的启示下,模拟研究了稠油在水基泡沫润滑作用下的流动性能,这为稠油管输减阻提供了一种新的思路,对于现场实践具有一定的理论指导意义。围绕稠油在水基泡沫作用下的管流特性,以塔河稠油THCO1和201甲基硅油为研究对象,测试分析它们的基本性质,筛选出一种硅油开展模拟实验研究;评价不同质量泡沫的性能后,确定一种泡沫作为润滑减阻实验的研究对象,建立泡沫润滑减阻的室内研究方法,实验研究水平、倾斜上升及垂直上升管中水基泡沫润滑硅油管流的能力;通过对实验时硅油-泡沫的流动形态的分析,建立不同倾斜度的管道内硅油-泡沫流动压降理论模型,并将其计算值与实验压降值对比分析;利用ANSYS FLUENT软件,数值模拟研究泡沫/硅油流量比、管道倾角及泡沫质量等因素对泡沫润滑减阻效果的影响,以进一步探索实现泡沫润滑减阻的流动条件。研究结果表明:20℃时,2#硅油可较好地作为稠油模拟油用于泡沫润滑减阻实验研究;由水基泡沫体系AFS-2制备的泡沫2(泡沫质量0.5,属于湿泡沫)较宜用于泡沫润滑减阻实验;水平管内,基本呈上部泡沫-下部硅油的分层流动,但下部有泡沫析液的润滑作用,且当泡沫/硅油流量比介于0.2和0.8之间,减阻效果较好;倾斜管内的硅油-泡沫流动变化规律与水平管内的类似,当泡沫/硅油流量比超过0.3后,减阻率与其便没有明显关系,但均超过50%,最大的为73%;垂直管中,当泡沫/硅油流量比达到0.22(Q0=8.33L/min左右)时,减阻有明显的效果(压降率达到50%),当流量比达到0.50(Q0=8.33L/min左右)时,已经形成特别完整的泡沫环,减阻效果非常好(压降率为60%以上),且随着硅油流量增大,上述的流量比值和相应的压降率均小幅度增大;按照水平管硅油-泡沫分层流压降理论模型计算得到的值与实验压降值的误差绝对值在300%以上,但在硅油流摩阻项引入润滑修正系数0.4019后,误差降低至10%以内;倾斜管压降理论模型较为适用于泡沫/硅油流量比介于0.2和0.8之间的情况,倾斜角度为30°的和60°时的管流压降理论模型计算误差分别为±30%和±20%以内;对于在垂直管管壁和硅油中间已形成了泡沫润滑隔离层的情况,其压降理论模型的计算误差为±40%以内;通过数值模拟可知,不同倾斜角度的管道内,减阻效果较为理想的的泡沫/硅油流量比范围均为0.2-0.5;垂直管内的泡沫润滑减阻效果优于水平管和倾斜管内的;泡沫对硅油流动的润滑减阻效果随其质量的减小而明显增大。