【摘 要】
:
摩擦学研究的范围广泛,包括了摩擦、磨损和润滑的相关领域,是一门交叉性、综合性的学科。摩擦生热会起能量的损失,磨损则会造成机械零部件的失效。为了减少摩擦磨损,降低资源浪费,润滑是最有效的措施之一。在我国高速铁路系统快速建设中,有一种重要的零部件——轴承,它是高速列车中的必不可少的零件,其润滑问题不仅关系到零部件的磨损、能源的节约,更关乎到高铁列车的行驶安全。因此,对润滑问题机理的研究,在减少材料损耗
论文部分内容阅读
摩擦学研究的范围广泛,包括了摩擦、磨损和润滑的相关领域,是一门交叉性、综合性的学科。摩擦生热会起能量的损失,磨损则会造成机械零部件的失效。为了减少摩擦磨损,降低资源浪费,润滑是最有效的措施之一。在我国高速铁路系统快速建设中,有一种重要的零部件——轴承,它是高速列车中的必不可少的零件,其润滑问题不仅关系到零部件的磨损、能源的节约,更关乎到高铁列车的行驶安全。因此,对润滑问题机理的研究,在减少材料损耗、增加机械使用寿命、提高设备可靠性,以及节约能源方面具有重要意义。不同摩擦副有不同的润滑机理,而且一些有特殊表面形貌、表面织构的摩擦副也存在着不同的润滑性能。为了进一步研究不同类型、或具有不同表面织构的摩擦副的润滑机理,本文研制的多功能润滑试验机系统能够为研究这些机理提供新的研究手段,以更好地研究润滑对摩擦性能的影响,具有重要的现实意义和经济效益。本文绪论首先综述了本课题的研究背景,讲述了摩擦润滑问题在我国高速铁路系统建设等领域所起到的巨大经济作用及其意义。然后再进一步论述了润滑试验机在研究润滑理论中扮演的角色,分析了润滑试验机的分类、特点及国内外发展历史,最后本文的研究内容则在此基础上得以确立。第二章在分析原有试验机优缺点的基础上明确了研制新型试验机的技术要求和功能要求,然后给出了润滑试验机的总体设计方案。第三章则利用Solid Works设计软件,对多功能润滑试验机的机械结构的各个模块进行了详细的设计,包括玻璃盘回转单元设计、试验体转动单元设计、荷载加载系统设计等。第四章则是对试验机的测控系统进行了一个详细的设计,确定了实验所需的显微镜、CCD相机、光源、扭矩传感器等硬件,明确了图像采集和摩擦力的采集方法,并给出了驱动控制系统的设计方案。第五章则完成了试验机的组装调试及验证工作。当装配及调试完成后,则对试验机的可用性进行了验证。最终,在本试验机开展了一系列经典润滑实验,其实验结果证明了所获得的实验数据可靠、测控系统运行正常。而且该试验机整体性能稳定,为日后研究润滑机理提供了一个试验平台,具有一定的应用价值。
其他文献
对台军售问题是中美建交谈判的历史遗留问题,也是建交谈判中未能攻克的难题。本文旨在通过历史学档案材料分析法还原中美建交谈判中关于对台军售问题谈判的过程与细节,并探求建交谈判最终搁置对台军售问题的本质。早在基辛格访华之前,美国政府就绞尽脑汁地寻求一种美台共同防御条约(《中美共同防御条约》)的替代方案,以保证中美关系正常化后台湾的安全。《上海公报》发表后,中美关系取得了突破性的进展,但是美国始终不愿意放
荧光分子成像技术由于其廉价、简单方便、灵敏度高、重复性好等优点,因而在疾病诊断领域成为了人们关注的重点,尤其近红外荧光成像,已经成为肿瘤手术术中实时的影像导航手段。荧光探针作为荧光成像技术中的核心组成,无疑是影响荧光影像清晰度和分辨率的决定性因素,一个优异的用于荧光成像的荧光探针需要具备波长合适、量子产率高、光稳定性好、生物相容性好等优点。在肿瘤手术术中,需要对肿瘤组织区域进行长时间的实时跟踪成像
与结构简单的半导体纳米晶(Nanocrystals)相比,核心外延生长一个或多个具有较大带隙的壳,形成的核壳结构半导体异质结,可以消除表面的悬空键并有效减少了由表面缺陷引起的非辐射复合。这类纳米晶不仅具有高量子效率和光热稳定性,还具有较长的荧光寿命,使得其在新型太阳能光伏器件、发光二极管、生物成像、光电探测器和纳米激光等应用中具有非常广阔的应用前景。作为一种新兴的光学活性材料,手性分子修饰的半导体
近年来,光催化的研究与应用发展十分迅速,特别是在提高光催化剂效率、制备在可见光下具有催化活性的新型光催化剂等方面。其中二氧化钛(TiO2)因其具有高化学稳定性、易大批量制备、高催化活性、安全无毒等优点被看作是最理想的光催化剂材料,在环境净化方面发挥着巨大的优势。但由于TiO2禁带宽度大,只在紫外光照射下才能被激活,其大大降低了它的光催化效率。因此,合成在可见光下具有高催化活性的TiO2复合物材料成
近年来,基于葡萄糖氧化酶(GOx)的纳米探针在癌症诊断和治疗领域中,引起了广泛的关注。GOx是一种广泛存在于自然界中的需氧脱氢酶,主要来源于霉菌和蜂蜜。它可以与葡萄糖和氧气(O2)反应生成过氧化氢(H2O2)和葡萄糖酸。葡萄糖作为细胞主要的营养供应来源,在肿瘤生长中起着至关重要的作用。利用GOx对葡萄糖的高效催化反应,可以通过测定催化反应中O2的消耗或H2O2产量来检测葡萄糖的含量,并以此推断癌症
花菁染料及衍生物具有光谱范围宽、荧光量子产率高、结构易修饰等特点,被广泛用于近红外(NIR)荧光成像和光治疗研究。然而,其光稳定性和水溶性差等限制了其生物医学应用,因此,设计和合成功能化的花菁类染料分子,提高其理化性能,成为研究的热点。本论文以NIR花菁染料为母体,通过引入共轭基团,获得新型花菁染料并制备其纳米探针,用于白蛋白检测和肿瘤诊疗一体化研究。主要研究内容包括:(1)荧光“关闭-开启”型花
辐射制冷技术因为有能源时代的推动才得以迅速发展。现如今能源问题随着世界各国的高速发展形势愈发严峻,主流能源的采用依旧是延续传统的不可再生能源为主,大量使用这些能源必将导致其濒临枯竭,而在它们消耗殆尽前找到新的代替能源并节约现有能源,无疑已成为目前科研工作者急需研究解决的问题。室内电器(如冰箱,空调等)和一些室外结构(如汽车,建筑物等)的制冷供暖系统等所带来的能耗在很大程度上导致了诸如能源短缺和全球
通过截肢患者残肢上的表面肌电信号(Surface Electromyography,s EMG)来判断人的动作意图以实现假肢控制是一种重要的人机交互技术。但是s EMG电极偏移带来的信号非平稳性会造成动作识别率的急剧下降,进而严重影响肌电假肢控制的日常使用。现有针对电极偏移的鲁棒性算法大多基于高密度s EMG信号进行,并且取得较好的结果。但是,高密度s EMG假肢并不符合临床实用性的要求。一般s
热电材料能够实现热能与电能的直接相互转换,在温差发电和半导体制冷领域具有重要的应用。以N型Bi2Te3和P型Sb2Te3为代表的Te基热电材料体系,在室温区具有优良的热电性能,以其制备的热电薄膜可应用于可穿戴设备等微型半导体器件,因此备受人们的关注。目前制备Te基热电薄膜的方法较多,其中,以真空热蒸发法制备的Te基热电薄膜,虽具有良好的热电性能,但该技术在薄膜成分控制上存在一定的弊端。鉴于此,本文
改革开放四十年来,我国工业和社会发展迅速,对能源需求越来越大。石化能源长期以来在我国能源结构中占比巨大,随之带来的大气污染也日趋严重。二氧化氮是一种常见的室外大气污染气体,能刺激呼吸器官,引起急性和慢性中毒,严重危害人体健康。因此,实现对大气中二氧化氮气体大范围、实时在线监测及其变化趋势的智能分析显得尤为重要。为了满足构建气体检测环境物联网的需求,迫切需要发展高灵敏、低功耗二氧化氮气体传感器。声表