【摘 要】
:
近几年,视网膜图像的血管分割一直是医学领域的研究热点,精确的分割视网膜血管是很多疾病诊断的重要前提,常常被作为诊断视网膜血管病变、糖尿病、高血压、青光眼的重要手段。传统的眼底血管分割是由医生手动完成的,但存在耗时长、过度依赖医生专业性的问题,随着图像处理的快速发展,视网膜自动分割取得了一些进展。然而,眼底血管图像存在数据集少、血管大小尺寸不一和病变背景干扰的问题,加大了图像分割的难度,也导致了视网
论文部分内容阅读
近几年,视网膜图像的血管分割一直是医学领域的研究热点,精确的分割视网膜血管是很多疾病诊断的重要前提,常常被作为诊断视网膜血管病变、糖尿病、高血压、青光眼的重要手段。传统的眼底血管分割是由医生手动完成的,但存在耗时长、过度依赖医生专业性的问题,随着图像处理的快速发展,视网膜自动分割取得了一些进展。然而,眼底血管图像存在数据集少、血管大小尺寸不一和病变背景干扰的问题,加大了图像分割的难度,也导致了视网膜图像的血管分割一直充满挑战。综上所述,视网膜血管的精确分割还有很大的提升空间。本文选择公开的CHASE数据集和DRIVE数据集进行实验。阅读了大量文献,选择U-Net网络作为基线模型,在此基础上进行改进,本文方法与其他现有方法相比,取得了很好的分割效果。本文主要的贡献有三点:1、提出了基于高低维特征融合注意力机制的U-Net网络分割算法。针对视网膜图像分割精度低的问题,本文在U-Net网络的基础上,在解码器的卷积操作中嵌入高低维特征融合注意力机制,其中,高维度和低维度的特征分别包含丰富的类别信息和位置信息,对需要关注的目标特征进行加权,减缓无用信息的干扰,提高分割模型的准确率。2、提出了基于串联金字塔池化模块和级联空洞卷积模块的U-Net网络分割算法。本文将U-Net网络的底部卷积核替换为串联金字塔池化模块和级联空洞卷积模块,金字塔池化模块和级联空洞卷积模块都具有在不增加网络参数的基础下,扩大特征图的感受野、提取丰富的图像特征的优点,串联的连接方式能得到更好的分割效果。3、本文将注意力机制模型、串联金字塔池化和级联空洞卷积模块融合起来进行实验,最终,基于CHASE数据集和DRIVE数据集的实验研究表明,所提融合模型与单一模型以及其它现有方法相比,准确率分别能达到98.11%和97.25%,灵敏度分别能达到81.73%和80.98%,充分验证了该模型能有效提高血管分割精度、辅助确诊血管病变,对医学临床具有十分重要的实践价值。
其他文献
无线传感器网络(Wireless Sensor Network,WSN)是由许许多多被任意安放的嵌入式传感器通过感知采集外部地域情况而进行信息交互的多功能化监测系统。传感器节点内部嵌入微小电池,来满足网络中其他操作运行的电量所需,但是电池内部电量和功率都十分有限,随着实际可以使用次数的减少,传感器节点的能量随之减少,而这些电池又不易调换,因此,在合理使用电池的情况下,如何有效的减少电池的能耗且延长
无线传感器网络(Wireless Sensor Network,WSN)技术由于其具有超高的实用性,在物联网领域占有举足轻重的地位。无线传感器网络的应用场景通常为条件复杂的外界环境,所以在部署及运行过程中难免会遇到各种问题。在无线传感器网络的应用过程中,网络中存在着一些无法通过卫星定位系统进行位置信息获取的未知节点,在不借助卫星定位系统实现对未知节点的定位能够有效保障网络的运行以及拓展无线传感器网
能量补充问题是无线可充电传感器网络(Wireless Rechargeable Sensor Networks,WRSN)的重要的一个研究课题,借助磁耦合谐振充电技术,可实现单个充电装置同时对充电覆盖范围内的多个传感器节点进行能量补充,还能够实现多跳充电从而有效延申充电距离,提高网络充电效率。本文基于磁耦合谐振充电技术,从单对多和多跳两个角度提出两种可行有效的方案对WRSN进行能量补充,主要研究内
并列结构作为自然语言中的一种常见组成结构,它的正确识别可以很大程度上提高自动句法分析器的性能和效率,也能推进汉语树库的构建工作,同时其识别结果也可直接应用于机器翻译、信息抽取等领域。由于汉语本身复杂多变的特点,并列结构识别成为中文信息处理领域的研究难点。目前的研究中,基于规则的方法需要人工根据具体语言语法和领域来构造规则模板,应用这种方法系统实现代价很高,并且可移植性较差。基于统计的方法虽取得效果
日冕物质抛射(Coronal Mass Ejection,CME)是一种日冕物质从太阳日冕层向行星际空间抛射的强烈空间天气现象。CME严重影响着太空天气和人类生活,所以提高CME的检测效果对预报CME和保障人类的生产生活安全具有重大意义。尽管学者已经探索出了许多CME检测方法,但现有检测方法多采用人为定义特征和人为界定阈值等方法检测CME。由于人为定义特征不能很好表征CME且具有普适性的阈值难于选
图像分割是将图像分割为互不相交、具有独特性质的区域的过程,是计图像场景理解中的关键点,是计算机视觉的基石任务。近年来,随着视觉场景技术的不断深入,图像分割被广泛的应用在医学诊断、自动驾驶、交通系统、增强现实等领域。传统的基于活动轮廓的分割方法可根据图像本身信息演化曲线至目标轮廓上,常用于快速分割具有复杂结构的图像。但是,该方法无法通过学习大量的数据来获取高级特征。随着深度学习的发展,基于全卷积网络
铁磁性材料零部件被广泛地应用于大型机械设备、航天航空、管道运输等领域,铁磁性材料零部件在长期的服役过程中,由于受运行环境、制造工艺和使用方式等因素的影响,易产生表面或内部不同程度的损伤,影响设备运行情况及使用寿命,留下安全隐患,甚至造成工业事故。为此,对设备的铁磁性材料零部件及时地进行非接触、非侵入的检测变得十分重要。为了构建非接触、非侵入的缺陷检测模型,本文利用无损检测技术中的红外热成像技术,建
近年来,随着物联网、微电子技术和无线充电技术的飞速发展,无线传感器网络逐渐在工业应用中发挥重要作用。可以由无线充电器提供能量补充的传感器网络称为无线可充电传感器网络(Wireless Rechargeable Sensor Networks,WRSN),通常它由数量庞多的传感器节点组成,用于监测外界环境、数据传输、边缘计算。传感器节点通常由微电子组件和蓄电池构成,而能量有限的电池是制约WRSN寿命
周期性车辆路径问题(Periodic Vehicle Routing Problem,PVRP)是传统车辆路径问题的一个重要拓展,主要是为了满足客户多次配送服务的要求,优化配送周期内的客户组合和配送路径。目前,环境与能源问题的日益严峻,每个国家对环保的要求越来越严格。因此,考虑燃油消耗和碳排放等因素的绿色周期性车辆路径问题(Green Periodic Vehicle Routing Proble
节点被捕获是无线传感器网络(Wireless Sensor Network,WSN)内部攻击的第一阶段攻击,适宜的检测方法能够更好的保护WSN网络安全。在该论文提出的检测方法中,决策节点通过邻居节点交互信息得到决策,并将得到的决策由多跳路由发送给基站,基站将被认定已捕获的节点进行隔离。对于休眠机制问题,很多检测方法使用的是同步休眠而非异步休眠,甚至有些方法并不考虑休眠的问题;对于通信结构问题,现有