质子交换膜燃料电池低温储存与启动

来源 :大连交通大学 | 被引量 : 0次 | 上传用户:shtour
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell以下简称PEMFC)应具备环境适应性,其阴极氧还原的反应生成水这一固有的特性带来了 PEMFC零度以下水结冰的问题,严重制约了 PEMFC商业化进程。因为燃料电池在零度以下环境工作时,水结冰的主要影响是堵塞多孔电极微孔,流场以及气体流道,延长低温启动时间,加速电池衰减。而综合现有的文献报道,对于如何提高燃料电池在零下环境的耐受性以及燃料电池性能已经有了较为充分的研究,而对于PEMFC低温启动的研究却还很匮乏,尤其是低温启动过程中的热量传递及衰减情况,因此,针对质子交换膜燃料电池开展零度以下保存与启动的研究工作具有重要的现实意义。质子交换膜燃料电池低温启动过程中的热量传递是影响其是否启动成功的关键因素。本文首先通过热量守恒定律对电极活性面积为270cm2的五节金属板燃料电池的比热容、散热系数进行了测定,用以对燃料电池低温启动过程中伴随着的热量关系进行简单估算,进一步从理论上得到了质子交换膜燃料电池低温启动的可行性。其次,利用氢泵方法对质子交换膜燃料电池(PEMFC)0℃以下的环境启动进行了探究。通过考察不同环境温度对于氢泵启动的影响以及不同氢泵强度对于燃料电池低温启动的影响发现:在膜电极氧化电位之内,氢泵强度的高低决定了燃料电池低温启动的速度的快慢,而在相同的氢泵强度下,合理的增加air/H2流量,低温启动速度也会得到提高,并在此基础上成功实现了-30℃的低温启动。最后,考察了氢泵冷启动方法对于电池性能及结构的影响。主要利用氢泵方法在-20℃环境中多次启动电池并对其进行衰减测试,测试结果表明:氢泵冷启动方法不会对电池结构和性能造成影响,反而在氢泵作用下,电极表面的杂质得到有效去除,电池性能有所提高。而在低温启动过程中发现,传热较快的金属双极板在自启动方面更有优势,利用循环加载方式,成功突破燃料电池-20℃自启动成功。
其他文献
直接醇类燃料电池由于可以提供十分高的能量密度成为燃料电池中的佼佼者。燃料及催化剂是影响其性能及能量转换的主要因素,所以,改善现使用Pt基催化剂所存在问题也是重中之重。本文试验样品采用CuZrA1Y非晶合金条带作催化剂,通过改变腐蚀活化液及腐蚀条件优化催化剂性能获得最优腐蚀活化后的催化剂样品。利用扫描电子显微镜、电化学工作站对样品的微观结构、形貌,和活化性进行了系统的表征,结果如下:研究了活化CuZ
对于需要高额定功率,长循环周期以及高可靠性的不同应用,超级电容器是一项值得关注的技术。电极材料在超级电容器的性能改变中扮演着重要角色。过渡金属化合物成本低、毒性低,并且由于其具有优异的电导率,多种氧化态和比商用碳材料更高的理论容量,在超级电容器的电极研究方面拥有巨大潜力。本论文以水热法、高温退火和硫化改性等方法制备了一系列过渡金属基纳米复合材料,并通过各种检测仪器,对其形貌组成与结构性能进行了分析
卤代有机化合物是有机化学和金属有机化学中用途广泛的起始原料和重要的中间体之一,也是手性合成,医药,农药和天然产物合成研究中的不可缺少的重要骨架,具有很好的研究价值和
铂碳催化剂(Pt/C)是碳材料负载铂(铂@碳)的一种载体催化剂,属于贵金属催化剂中应用最广泛的一种。其中,由于Pt/C具有高氧还原(ORR)催化活性,而被广泛应用于铝空气电池。然而,Pt/C作为ORR催化剂,在实际应用和商业化前仍然存在许多问题与挑战,如:耐久性差、效率低、价格昂贵等。碳载体是影响铂碳催化剂催化性能的重要因素。碳气凝胶(CA)微球具有高导电率、高比表面积和丰富的多孔结构,可以通过反
科技不断发展,各类电子产品的性能和相应通讯技术不断提高和进步,生产和生活越来越方便快捷。这要求电子产品性能进一步提高,即产品在体积微型化的同时,满足通信高频化、功能集成化、以及稳定性和耗能低等的要求,这对相应原材料提出了更高要求。在磁性材料行业尤其如此,软磁材料因其较高的初始磁导率和低的矫顽力,被广泛用于高频领域,主要有软磁金属和软磁铁氧体两类。相比软磁铁氧体材料,软磁金属具有更高的饱和磁化强度和
地表反照率反映了地面对太阳辐射的反射能力,被广泛应用于地表能量平衡、中长期天气预测以及全球变化研究中。目前高分辨率遥感数据的反照率反演中,受云层、运行周期等因素的影响导致多角度观测数据不充足,无法进行精确反演。针对这一问题,可以充分利用丰富的地表历史BRDF产品数据获取先验知识,深入理解地表各向异性反射特征,将其应用于高分辨率遥感数据的反演中,弥补高分辨率遥感数据缺少充足的多角度观测数据的缺陷,简
二维材料一直以其优异的性能和多样的异质堆叠特性备受瞩目,随着时间的推移,各个领域都在微纳尺度展开了广泛地研究。范德瓦尔斯层状结构为研究二维体系中的光与物质相互作用提供了宝贵的平台,而单层过渡金属二硫属化物(TMDs_2)材料(例如WSe_2)能够实现光的旋光性和谷的自由度之间的耦合。最近,长程磁有序在二维单层Cr_2Ge_2Te_6和CrI_3中被发现,为研究原子级厚度的磁光现象提供了一个新的平台
我国以燃煤为主的能源消费结构短期内不会发生改变,燃煤使用过程中会排放大量污染物,氮氧化物(NOx)便是其中之一。为将NOx排放降到国家标准以下,多种脱硝技术得到发展与应用,其中以NH_3为还原剂的选择性催化还原(NH_3-SCR)烟气脱硝技术因其高效稳定等优点受到广泛关注。催化剂是SCR技术中的重点和关键,因此很多研究工作都是围绕开发高效催化剂配方来进行的。为高效快速调配新型催化剂,对SCR反应机
气溶胶在地球大气成分中含量很少,但是其对大气环境、生态系统的影响巨大。气溶胶由于粒子的来源和形成原因不同,其化学成分相差很大,并且随着气流和温度变化,呈现明显的地域性和季节性。快速、实时地分析气溶胶的化学组成,对于污染源的追溯和防控治理有着重要意义。激光诱导击穿光谱技术(LIBS)是一种原子发射光谱分析方法,LIBS技术相较于其他分析技术有着快速、原位、实时和全元素分析的优点,适用于大气环境领域的
随着微型机电装置的迅速普及,微型燃烧系统的易于携带、能量密度高等优点逐渐被关注。目前大多数学者主要研究氢气、甲烷等气体燃料,与气体燃料相比,液体燃料具有易于携带,能量密度高等优点,而乙醇作为一种可持续发展的可再生液体燃料,具有腐蚀性小,能量密度较高,H/C比高等优点,而且乙醇是一种氧化燃料,含有近35%的氧,可减少燃烧产生的微粒和氮氧化物排放,是一种前景乐观的汽油替代燃料。目前对于乙醇的微尺度燃烧