一类分数阶发展方程解的存在唯一性

来源 :成都理工大学 | 被引量 : 0次 | 上传用户:lulu6661125
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文讨论Banach空间X中如下分数阶发展方程解的存在唯一性{dau(t)/dta=Au(t)+B(t)u(t),t∈[O,T]u(o)=uo,其中u(-)是定义在[O,T]上的X值函数,(A,D(A))是稠定闭线性算子,且A生成解析C半群;对任意t≥0,(B(t),D(B))是稠定的闭线性算子,且D(A)(∈)D(B).在一些假设条件下,我们证明了上述分数阶发展方程解的存在唯一性。   本文由三部分组成:   第一部分介绍相关背景,分数阶微积分发展状况,同时介绍本文主要工作.   第二部分介绍基础知识并给出假设条件   第三部分是本文的主要结论.
其他文献
本文以经典的产量竞争的Cournot博弈模型为基础,考虑参与人具有不完全的信息条件下产量和价格动态系统调整问题,以及在系统调整过程中研究企业间的合作与竞争。通过对模型的
光线跟踪算法是真实感图形学中的主要算法之一,该算法具有原理简单、实现方便和能够生成各种逼真的视觉效果等突出优点。由于光线跟踪算法需要用到大量的求交运算,因此求交运算
本文研究群论在图论中的应用,其对象是具有某种对称性的图,主要方法是通过图的自同构群来研究图的对称性.本文的主要工作是分类和计数几类具有某种特性的边传递图。  第一章
本学位论文主要研究了两类外力干扰下的形状记忆合金非线性偏微分方程,其中一类包含粘性项,另一类则含低阶阻尼项.通过对方程解的范数作一致估计,并结合连续性原理与紧致性理
从1957年Doob,L.J.考虑并构造条件布朗运动开始(见[30]),Doob-h-变换一直是很多学者关心的问题(见[6,25,32,36,62,65,66,81]等及其参考文献)。任给一对L2(E;m)上的有保正性的强连续压缩
期刊
计数组合学是组合数学的重要研究方向之一,主要研究有限集合上的组合结构在给定条件下的计数问题.n元集合的分拆是组合数学中最为熟知的基本研究对象之一.最近,Deustch和Eliz