论文部分内容阅读
Riesz位势是调和分析中的重要算子,具有齐性核的分数次积分是围绕 Riesz位势发展起来的一个非常活跃的课题.近年来,关于齐性核分数次积分算子在各种空间上的有界性的研究取得了丰富的成果. 本文主要研究具有齐性核的分数次积分算子及其交换子在加权Hardy中的有界性. 首先利用加权Hardy空间的原子分解和分子分解定理得到了齐性核分数次积分算子T?,α当0<α
其他文献
我校英语组有一个国家级重点课题———《以学生学习活动为主线的教学设计与教学实践研究》。该课题主要倡导“将课堂还给学生、学生是课堂的主人”的教学理念。但在学生自学
分形图像压缩方法基于块匹配的思想,将编码图像分割为子块,对每个子块,搜索使拼贴误差达最小的父块,建立起映射关系,再根据压缩映射不动点定理解压出原始图像的近似图像.这种
合金凝固中产生的宏观偏析现象一直是金属工业界关心的一个中心问题,现在其他的一些交叉学科如计算数学、计算物理等也开始涉足这一领域.该文阐述的就是从这样一个视角出发对
非线性代数方程组(或者称多项式方程组)的数值求解,特别是其全部解的计算问题,有重要的理论价值,又有很强的应用背景,是理论物理等基础科学领域,以及电力系统、机械工程、化学工程
优化作业布置是提高学生学习质量的重要一环,下面是我就三种课型如何布置作业的心得体会。一、听说课外研版新标准教材中每个模块的第一单元都是听说课,重在培养学生的听说能
在经营决策中,经常会利用抽样或试验等手段来获得最新信息,然后再作决策,从而改善决策结果.但因抽样要推迟作决策的时间,又要花费人力,物力,财力等,对把经济效益放在首位的决策
大规模并行计算机的快速发展和应用,使得复杂物理系统的高分辨率数值模拟已成为可能.在这些数值模拟中,系统隐式离散后,通常需要求解稀疏线性代数方程组,所耗费的时间有的甚至达
本文考察如下发展型p-Laplace方程组的正解: {ut=div(|(△)u|p-2(△)u)+f(u,v),(x,t)∈Ω×(0,T),(1.1)vt=div(|(△)v|p-2(△)v)+g(u,v),(x,t)∈Ω×(0,T), 其中Ω为Rn中具有光滑
余庆县实验中学英语教研组参加了贵州省基础教育科学研究重点课题:《以学生学习活动为主线的教学设计与教学实践研究》.经过一年多的摸索,我在研究的子课题——《学生利用预
本文针对三种不精确准则,提出了相应的三种不精确临近点算法(APPA),并且给出了详细的收敛性证明。其中算法一基于Rockafellar的思想,采用绝对误差作为不精确准则;算法二参考Eckstei