论文部分内容阅读
基于超(亚)临界流体溶解能力强、扩散系数大和粘度小的特性,超(亚)临界流体技术被广泛用于诸多领域。其中,超(亚)临界流体体系的相平衡数据和相平衡模型是实现超(亚)临界流体技术工业化的重要基础,而目前这一部分的研究还比较匮乏。本文分别对固体芳香烃衍生物和高分子聚合物在超(亚)临界流体中的相平衡进行了系统的实验和理论研究,可望促进超(亚)临界流体技术的进一步发展。论文的主要研究工作如下:(1)本文改进并完善了静态法实验流程,验证了动态法和静态法实验装置的可靠性,确定了实验条件;并利用动态法和静态法测定了芳香烃衍生物单质、混合物以及聚合物(多种分子量)在超(亚)临界流体中的溶解度,实验选用的溶剂为超临界CO2和亚临界R134a。在实验温度308 K,318 K和328 K下,测定了邻氨基苯甲酰胺、邻硝基苯甲酸及其混合物在超临界CO2和亚临界R134a中的溶解度,在超临界CO2和亚临界R134a体系中的实验压力分别为10.0-21.0MPa和5.0-15.0 MPa;在实验温度313 K,323 K和333 K下,测定了聚乙烯醇(分子量为16000,47000,74800 g·mol-1)在超临界CO2和亚临界R134a的溶解度,在超临界CO2和亚临界R134a体系中的实验压力分别为9.0-18.0MPa和7.0-15.0MPa。本文测定的溶解度均未见报道。这些溶解度数据丰富了超(亚)临界体系数据库,为超(亚)临界流体技术工业化提供了数据支持。(2)考察了不同实验温度、实验压力、溶剂种类、聚合物分子量条件下,溶质的溶解度变化趋势;分析了溶质饱和蒸汽压、溶剂密度、官能团、偶极矩、溶解度参数等性质对溶解度的影响;以及混合物中共溶质对溶解度的影响。(3)运用Chrastil、A-L、K-J、S-S、Bartle、M-T和Gonzalez、Sovova、M-M-T、Z-J十种经验模型,对单一溶质和混合溶质在超临界CO2和亚临界R134a中的溶解度数据进行关联,模型均获得了较高的关联精度。利用M-T模型对实验数据的可靠性进行验证,结果表明实验数据均具有良好的自洽一致性;利用Chrastil、K-J和Bartle模型计算了溶质在超临界CO2和亚临界R134a中的溶解热效应。(4)针对膨胀液体模型对超(亚)临界体系溶解度数据关联精度较低这一问题,本文提出了改进的膨胀液体模型M-δ1/vl模型,考察了膨胀液体模型中热容项对溶质溶解度的影响。选用本文的实验数据和文献中90种溶质的溶解度数据(共计2425组溶解度数据)验证新模型的关联精度,并与δ2~ρ、δ2~ρd、δ2~δ1/v1、β12~ρ2模型的关联结果进行比较。结果表明,M-61/v1模型的关联精度最高。此外,使用t检验分析了膨胀液体模型中可调参数个数对关联精度的影响。分析结果表明,M-δ1/v1模型较高的关联精度与其模型的表达方式以及热容项的考虑有关,与模型较多的可调参数无关。(5)本文依据超临界体系相平衡理论,研究探索了基于密度泛函理论(DFT)预测聚合物在超临界CO2中溶解度的方法,建立了聚合物和CO2分别在聚合物相和超临界CO2相中的能量表达式。利用DFT模型预测了一定温度和压力条件下聚环氧丙烷、聚二甲基硅氧烷和聚环氧乙烷在超临界CO2中的溶解度,并与文献中的实验数据进行对比。结果表明DFT具有较高的预测精度(平均AARD为6.80%)。该方法为理论预测聚合物在超临界体系中的溶解度提供了一种新的方法。