论文部分内容阅读
微结构气敏传感器与电子鼻是近年来国际上传感器领域的研究热点,微结构气敏传感器是利用微电子、微机械加工和薄膜技术将加热测温电阻、测量电极和敏感薄膜集成一体的新一代气敏元件,具有低功耗、易集成、易阵列化、易智能化等优点,因此气敏薄膜材料的研究开发也成为一个热点。纳米三氧化钨是重要的半导体材料,在信息存储、变色窗、燃料电池、化学传感器等领域有着广泛的应用前景,成为目前最具开发潜力的材料之一。本论文采用反应磁控溅射法制备了WO3和Ti掺杂WO3薄膜,首次得到了p型钛掺杂WO3薄膜,并用溶胶凝胶法制备了WO3基Pd掺杂光学型传感器薄膜材料。主要研究内容及结果如下:1)采用XRD、XPS、AFM、分光光度计、Hall效应仪、台阶仪等对薄膜样品结构性能、光学性质、电学性质、表面型貌以及掺杂含量等进行了表征,并对纯WO3薄膜与Ti掺杂WO3薄膜的进行了比较。揭示了热处理温度与WO3薄膜晶相变化的关系,研究了掺杂对WO3气敏薄膜光学性质、电学性质等的影响,得到了WO3基气敏薄膜的较佳制备及热处理条件。2)采用透射谱和单谐振子模型获得了薄膜的的光学常数和光学带隙,计算结果表明WO3薄膜为间接带隙,原态WO3薄膜的折射率在可见光范围为2.3-2.0,光学带隙为3.14eV左右,并得到了声子能量。讨论了热处理和Ti掺杂对光学带隙的影响,从理论上验证了取得理想微结构气敏传感器WO3敏感薄膜的条件。3)详细研究了WO3和WO3掺杂薄膜的气敏响应特性,并首次利用WO3的变色特性研究了WO3基光学型传感器薄膜材料的特性。发现20%氧分压下制备的的样品,对氧化性气体NO2有较理想响应特性,最低测试浓度为0.1ppm,工作温度在150℃-180℃;而p型钛掺杂WO3薄膜对还原性气体LPG更敏感,响应曲线接近方波,但工作温度较高,在400℃左右。对适于非加电场合使用的WO3基光学型传感器薄膜材料的研究是本文的创新点之一,我们在实验基础上给出了基于WO3薄膜光学型传感器的气敏光学机理,而该机理分析方法适用于其它n型半导体气敏光学薄膜。上述研究中,对Ti掺杂P型WO3气敏薄膜的研究是本文的重要特色与创新,而n型半导体气敏光学薄膜的气敏机理分析方法对其它光学气敏薄膜的研究具有重要指导意义。在这些研究的基础上,我们也明确了后续的研究目标。