论文部分内容阅读
在机械结构中经常存在缺陷或工艺性孔洞/夹杂等各种形式的几何或物理性质的不连续性现象。当该结构承受以弹性波为代表的动态载荷时,导致结构内位移和应力的重新分配。目前已有许多学者对各种模型下的缺陷体进行了相关研究,但主要集中在宏观尺度下讨论,对纳米缺陷体的研究相对较少。当材料的尺度达到纳米级或更小时,表/界面效应将对材料的力学行为产生重大的影响。因此,确定动应力在缺陷体附近的分布对纳米材料结构的优化设计非常重要。本文在已有研究的基础上,利用波函数展开法和复变函数理论结合表面弹性理论研究了不同模型下嵌有纳米非均匀缺陷体对剪切波(SH波)的散射问题。首先结合波动理论给出入射波、散射波以及折射波场的位移势函数,接着根据经典弹性理论得出相应含有未知系数的应力场;其次基于表面弹性理论给出纳米非均匀体边界处的边界条件;然后根据三角函数的正交性,利用Maple软件通过数值模拟求解出未知系数,从而得到应力场;最后根据数值结果讨论了不同模型下各种因素对动应力集中因子(DSCF)以及径向应力的影响。围绕这一基本思路,本文的主要成果如下:(1)无限大弹性体内含纳米圆柱形孔洞/夹杂对SH波的散射采用复变函数理论,研究了平面内圆柱形纳米孔洞/夹杂对SH波的散射问题。首先根据波动方程给出了入射、散射和折射波场。其次考虑表面效应,给出纳米尺度下的边界条件,并建立求解散射波函数中含未知系数的无穷代数方程组,利用三角函数的正交性得到了应力场的解析解。最后通过数值模拟分析了表面效应、波数以及夹杂的软硬度对孔洞/夹杂周围动应力集中因子和径向应力的影响。(2)半平面边界含纳米圆弧形孔洞/夹杂对SH波的散射采用波函数展开法,研究了半平面边界含纳米圆弧形孔洞/夹杂对入射平面SH波的散射问题。结合经典弹性理论、表面弹性理论,通过三角函数的正交性得到半圆弧应力场的解析解以及一般圆弧应力场的无穷代数方程组。最后通过算例分析了表面效应、入射角、圆弧的深浅以及夹杂的软硬度对孔洞/夹杂周围动应力集中因子的影响。(3)直角平面内含纳米圆柱形夹杂对SH波的散射采用波函数展开法和复变函数理论以及多极坐标移动技术,研究了直角平面内圆柱形纳米夹杂对SH波的散射问题。首先,给出了直角平面内的自由场。其次,通过镜像方法建立直角平面中的散射和折射场,在同一坐标系中的总波场由Graf加法公式给出。然后,利用表面弹性理论得到应力边界条件和位移连续条件,并建立求解散射和折射波函数中含未知系数的无穷代数方程组。最后,利用三角函数的正交性得到应力场的数值解。数值结果表明,当夹杂物收缩到纳米级时,表面效应对DSCF有显著的影响。同时分析了入射波波数、夹杂的硬度以及从纳米夹杂物的中心到直角边界的距离对圆柱形夹杂周围动应力集中因子的影响。(4)直角平面内角点纳米圆弧形夹杂对SH波的散射采用波函数展开法,结合经典弹性理论、表面弹性理论,研究了直角平面内角点圆弧形弹性纳米夹杂对入射平面SH波的散射问题。通过三角函数的正交性得出应力场的解析解。最后通过数值模拟讨论了表面效应、波数以及入射角对圆弧周围动应力集中因子的影响。(5)无限大弹性体内含纳米任意形孔洞/夹杂对SH波的散射采用复变函数理论和保角变换方法研究了纳米任意形孔洞/夹杂对SH波的散射问题。通过保角变换将任意形孔洞/夹杂转化为一个圆形孔洞/夹杂,然后给出圆形孔洞/夹杂的入射、散射以及夹杂内的折射波函数。接着同样根据表面弹性理论给出了孔洞/夹杂界面处的应力边界条件和位移连续条件,进而得出散射和折射波所对应的含有未知系数的无穷代数方程组,通过三角函数的正交性进行求解,得出任意形孔洞/夹杂的应力场。最后通过数值模拟,作为特例讨论了波数、椭圆短轴与长轴之比、夹杂的软硬度以及表面效应对圆形、椭圆形和正方形孔洞/夹杂周围动应力集中因子的影响。