论文部分内容阅读
复杂运动目标的电磁散射建模和计算在军事和民用上都有着重要的价值。传统的计算电磁学主要研究对象是静止或者单一目标的电磁散射问题。本文从实际应用角度出发,具体地研究和分析了几种实际工程中典型的复杂运动目标电磁散射问题。首先,本文回顾了矩量法和多层快速多极子算法。对本文研究工作的基础算法、矩阵方程迭代求解方法、奇异积分处理方法等进行简单的介绍。为后续的工作展开提供了基础。针对多运动目标的电磁散射问题,首先详细地阐述了传统的多层快速多极子算法在该问题上的局限性。为了提高多运动目标的电磁散射计算效率,提出了一种针对多运动目标的快速算法。新算法基于动态的八叉树结构,可以通过子目标八叉树最高层之间的转移来精确高效地计算运动的子目标之间的耦合。数值算例证明了新算法在计算多运动目标的电磁散射时,在保证结果精确性的同时具有效率上的优势。针对子目标几十或者上百的多运动目标群的电磁散射问题,为了提高计算效率,提出了双重八叉树结构。双重八叉树结构由一个主八叉树结构和多个随子目标运动的子八叉树结构组成。对于两个距离较远的目标之间的电磁耦合,采用在主八叉树上聚合转移再解聚合的方式来计算。双重八叉树结构能减小多运动目标群电磁耦合的计算复杂度。数值结果证明基于双重八叉树结构的快速算法能高效精确地计算多运动目标群的电磁散射。针对实际工程中复杂背景下运动目标的电磁散射问题,分析了以往算法存在的两个困难。第一个困难是复杂背景和运动目标尺寸相差太大,具有不同层数的八叉树结构,无法通过最高层之间的转移来实现目标和复杂背景之间的耦合。第二个困难是由于复杂背景的尺寸一般较大,相对应的最高层分组盒子的边长也很大,目标和复杂背景之间的距离很容易小于这个边长,从而导致加法定理无法使用。为了克服这两个困难,提出了层级自适应八叉树结构。数值算例证明基于层级自适应八叉树结构的快速算法能够精确且高效地计算出复杂背景和运动目标之间的耦合。针对水面运动目标的电磁散射问题,本文采用开尔文尾迹方法建立运动舰船的尾迹。考虑海面的风动背景,采用蒙特卡洛方法建立风动海面模型。首先采用小斜率近似算法计算和分析了舰船对风动海面的电磁散射影响。其次采用多层快速多极子算法计算了水面舰船和尾迹以及风浪的复合目标的电磁散射。针对水下运动目标所产生的海面尾迹的电磁散射问题,采用计算流体力学方法来建立水下运动目标的尾迹模型。通过分析尾迹模型的几何特性,验证了尾迹模型是可信的。采用小斜率近似方法计算了风动背景下水下运动目标在不同速度、不同深度、不同运动方向时尾迹的电磁散射。通过对比和分析不同情况下尾迹的电磁散射结果,发现水下运动目标在不同运动状态下,电磁散射会略有差异。这些结论能为水下运动目标电磁探测方法提供一些参考和支撑。