论文部分内容阅读
氧化锰矿物是经化学和生物氧化Mn2+后形成的、具有高反应活性的一类金属矿物,通常以较高的含量和以球状、块状或不规则形等形状的聚集体的形式分布于土壤和水体沉积物中,能强烈地吸附多种重金属、放射性元素和微量元素等,影响或直接决定着它们在环境中的浓度、形态、迁移和转化过程,从而在元素的生物地球物化流动循环中充当重要环节。大量的研究已证实,多种微生物类群,尤其锰氧化细菌和锰氧化真菌类群,是自然界中氧化锰矿物形成的主要驱动力。本文基于实验室一株锰氧化假单胞菌(Pseudominas sp.)T34菌株和另一株表面展示多铜氧化酶的恶臭假单胞菌(Pseudomonas putida)重组菌MB285均可在Mn2+诱导下形成生物锰氧化矿物聚集体的特性,制备了由Co2+/Ni2+等外源金属掺杂的多种纳米-微米级生物锰氧化物聚集体并进行了多重形貌与性能表征测定,然后利用聚集体作为生物模板进一步制备了MnO基质的中空、多孔和高氧化势能的电化学材料并测定了用于锂离子电池负极材料时的电化学性能。此外,利用多铜氧化酶对有机化合物的降解活性,研究了表面展示多铜氧化酶工程菌MB285菌株对有机磷农药毒死蜱的完全降解活性。其主要研究内容和结果如下: 1.从实验室保藏的具有锰氧化活性的野生菌株中筛选到能形成锰氧化物聚集体的假单胞菌T34,另发现表面展示多铜氧化酶的恶臭假单胞菌MB285在含Mn2+环境下连续培养时也具有类似活性。在培养过程中分别添加Co2+和Ni2+,分析了氧化物矿化过程中这两种金属离子对野生菌株T34菌株和工程菌MB285菌株锰氧化活性的影响,证明了金属离子在锰氧化矿物形成的过程中与其存在互作。对T34和MB285形成的聚集体表观形貌和主要物相进行了多重表征,发现T34生成的聚集体为层状堆叠结构,MB285生成的聚集体为微球形;两种聚集体均为介孔材料,具有较高的比表面积,主要成分仍以生物质为主;形成的聚集体为高价态锰氧化物分散在细菌和胞外多糖等生物质中的微米-纳米结构。分析了影响锰氧化活性的多种因素尤其是锰氧化酶在锰氧化活动中的重要作用,明确了锰氧化物矿化作用的优化条件。 2.以T34菌株和工程菌MB285形成的生物锰氧化物聚集体作为前驱物,利用生物矿化作用和金属离子沉降槽的特性实现了温和条件下Co和Ni元素的掺杂,然后利用生物模板法将聚集体前驱物在Ar气环境中以不同温度进行高温碳化,制备了由Co和Ni掺杂的多种复合材料。通过X射线光电子能谱、相组成和精细结构分析技术证实这些材料为以MnO纳米晶体为基相、多相彼此掺杂并共同镶嵌于碳基质的多孔复合物材料。研究表明,随碳化温度的提高,复合材料的石墨化程度逐渐提高,而适当的碳化温度可使材料形成中空和多孔形貌。 对各温度下合成的材料作为锂离子电池负极材料的电化学循环性能和倍率性能进行比较。由于具有独特的中空多孔结构和呈多相掺杂的状态,由T34菌株制备的复合材料CMC-Co和CMC-Ni在循环过程中展现了良好的循环稳定性和可逆比容量,CMC-Co和CMC-Ni保留的可逆放电容量分别为650 mAh g-1和547.2 mAh g-1(0.1 Ag-1,50个循环)。由工程菌MB285制备的复合材料CMB-Co和CMB-Ni的比容量分别为361.44和379.29mAh g-1(0.1 Ag-1,50个循环)。所有制备的掺杂Ni氧化物材料的循环稳定性都有大幅度的提高,并且在循环性能的测试中具备接近零容量损失的特性(200个循环),极化现象消失。 3.研究了工程菌MB285对农药毒死蜱的生物降解能力。通过高效液相色谱和气相色谱-质谱联用技术对降解产物的组成进行分析的结果表明,MB285能够完全降解毒死蜱;而非细胞表面固定的游离多铜氧化酶仅能将毒死蜱转化为3,5,6-三氯-2-吡啶醇。工程菌MB285降解反应过程中存在两种中间代谢物,即3,5,6-三氯-2-吡啶醇和磷酸二乙酯,反映该菌对毒死蜱的完全降解是通过表面多铜氧化酶和部分细胞酶类的联合作用和分多步反应来实现的。降解反应可以在较宽范围的pH值(2~7)和温度(5~55℃)下进行且不需要Cu2+参与。使用秀丽隐杆线虫(Caenorhabditis elegans)作为指示生物的生物测定实验表明含毒死蜱培养物通过工程菌MB285降解后发生了完全脱毒作用。此外,该工程菌展示了可重复利用的高降解活性和进行连续降解反应的良好循环性能,以及在自然废水体系中对毒死蜱的强降解能力。因此,显示了在生物修复毒死蜱残留物污染方面的应用潜力。