不同地应力下应力波在粗糙节理处的传播规律研究

来源 :武汉理工大学 | 被引量 : 0次 | 上传用户:zgjcq1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
节理对岩体强度特性与变形特性均有重要影响。地应力作用下深部岩体节理表现为闭合隐性特征,在地震、爆炸等荷载作用下会产生张开与滑移,对岩体的稳定性极为不利。考虑天然节理粗糙性,本文结合数值模拟与理论分析方法,研究了应力波在不同地应力下粗糙节理处的传播规律,具体研究工作如下:
  (1)通过与理论对比,验证了采用离散元软件UDEC模拟剪切波在充填节理处传播的可行性,采用中线截距平均值Sm和起伏均方根Rq生成不同粗糙程度的节理,对S波垂直入射粗糙充填节理的影响参数进行了数值研究。发现节理粗糙度对透射系数的影响与充填厚度密切相关,其中节理起伏均方根Rq的影响更大。当考虑充填材料的破坏时,发现在平直充填节理出现滑移后,透射波波幅与充填节理的强度有关,而与入射波波幅无关。
  (2)考虑地应力的影响,基于时域递归分析法,分别采用节理连续屈服模型(CY模型)与节理BB模型推导了S波与P波入射非线性节理的波动方程,所得理论解与UDEC模拟结果具有较好的一致性。
  (3)基于节理CY模型,通过UDEC对节理刚度、粗糙度、入射波波幅及频率等参数对S波在深部节理处传播规律的影响展开了研究。发现随着节理切向刚度、粗糙度及地应力的增大,透射系数均增加;侧压力系数对透射系数的影响具有阶段性,当侧压力系数不大于1时,透射系数随着侧压力系数的增加而增加,而当侧压力系数超过1,透射系数随着侧压力系数的增加而减少。当考虑节理的非线性及塑性变形特征时,应力波衰减规律受到波幅及地应力的综合作用。当地应力足够大时,应力波传播规律与入射波波幅基本无关。
  (4)基于BB节理模型,考虑了节理刚度、入射波波幅及角度等参数的影响,研究了不同地应力下P波斜入射一组平行非线性粗糙节理的传播规律。发现节理越粗糙,初始法向刚度越大,P波在节理处的衰减越小;透射系数随着侧压力系数增加而增加,且当侧压力系数大于1时,增加幅度减小。入射角度的影响对地应力有着较大的依赖性。当地应力较小且入射波波幅到达某特定值前,随着波幅的增加,透射系数增加,且地应力越小,增加幅度越大。而当地应力大于30MPa后,入射波波幅对应力波衰减规律的影响可以忽略。
其他文献
网络理论是描述和分析社会、生物、物理、信息和工程科学中的复杂系统的重要工具。但是现有的大多数理论是对复杂网络的单一、静态的描述,不能描述复杂网络多样的交互模式的特性,而多层网络被提出用于刻画复杂网络这一特性。因此,近年来国际上提出的多层网络成为复杂网络领域的重要研究方向之一。但是多层网络的数据规模很大,而对其直接进行分析会造成计算成本过高,效率低下以及不易观察到隐含的模式。最近,网络表征学习被提出
学位
在目前的机器算法研究与应用中,需要海量的人工标数据去训练模型。在计算机视觉任务中大量的标注任务不仅仅给研究者带来负担,而且标注的精度也并不总令人满意。这就使得要获得大量人工标注的数据变得非常困难,也让仅需少量标注样本的主动学习算法有了极大的发展空间。主动学习的关键就在于选择的策略,而目前的大部分策略都只适用于分类问题,目前还没有很多适用于基于深度学习的目标跟踪和检测领域的主动学习算法出现。所以本文
学位
当前,基于卷积神经网络的深度学习技术在计算机视觉等多个领域取得极大成功,也是最具代表性、最有效的方法。但是深度学习技术严重依赖于标签准确且类别间数据平衡的大规模数据集。然而,大规模的标签准确的数据是极难获取的,同时真实世界的数据集大多存在类别间样本不平衡的问题。针对计算机视觉领域中的图像分类和人脸识别任务,如何有效利用标签噪声的数据或类别间不平衡的数据训练出理想的深度学习模型是一个亟待解决的难题。
迁移学习是机器学习中一个非常重要的任务,已经引起了诸多学者的关注。在实际应用领域中,例如图像识别、文本分类、自动驾驶等场景下,获得大量标记数据进行训练通常是一件非常困难并且代价十分昂贵的事情。可以获得的往往是少量标记数据或大量其他相关领域的标注数据。  随着自动驾驶技术的不断发展,驾驶模式识别问题成为越来越重要的问题。它与自动驾驶汽车的感知、决策和控制等各个方面紧密相关。本文利用迁移学习来解决自动
随着天文观测设备的建造和大型巡天项目的进行,天文图像数据数量飞速增长,随之而来的是对于海量天文图像数据存储与检索的迫切需求。大数据、云计算、虚拟化等新兴技术的普及使得基于云环境的服务得到广泛关注,庞大的天文数据也开始迁移到云环境中,然而“按需收费”的费用模式使得天文工作者需要支付高昂的费用。用户往往需要包含目标区域或天体的局部图像进行研究,原始全图的存储与传输会导致较高的费用和较长的传输时间与带宽
随着大数据应用的迅速发展,数据中心的I/O延迟以及吞吐量成为了关注的焦点。Lenovo/IBM的研究报告表明,即使装备基于PCIe接口的固态硬盘,当运行一个典型的数据库系统时,多于60%的时间是在等待外存的I/O数据请求。而现有的文件系统设计主要基于传统机械硬盘的顺序访问机制,其数据分配主要采用顺序分配的方案。顺序分配策略并没有充分考虑SSD的多通道特性,从而出现大量数据在同一时间访问一个数据通道
目前大多数软件漏洞在披露时仅包含简要的描述信息,据此,安全分析人员无法准确分析软件产品漏洞的危害性和严重程度。对漏洞特征的刻画有助于漏洞危害程度的分析,所以有必要对漏洞特征进行预测。  现有的漏洞特征预测技术仅适用于单个漏洞特征的预测,对于具有内在联系的多个漏洞特征无法完成预测,本文给出了一种基于多任务学习的漏洞特征联合预测方法。首先,提出了基于多任务学习的联合模型。该联合模型将每个漏洞特征作为一
尽管深度神经网络具有记住数据集的能力,但是深度神经网络经常能实现好的泛化性能。一方面,神经网络学习算法学习到的具有泛化能力的解和不具有泛化能力的解之间的区别仍然是一个谜。另一方面,神经网络隐层单元之间的相关性逐渐被研究者所强调和重视,但是隐层单元之间的相关性对于最终泛化性能的影响还没有被完全探索和评估。在本文中,我们把研究神经网络的泛化性能的需求和隐层单元之间的相关性的需求结合起来,提出了一个监测
学位
知识图谱的发展日新月异,被广泛应用于自然语言处理的各个领域,如知识库补全、问答系统等。知识图谱表示学习在许多人工智能应用中扮演着重要的角色,与词向量嵌入的方法类似,图嵌入方法是一种与任务无关的、无监督知识表示方法。对于知识图谱的嵌入向量而言,在语义上的相似度越高,在向量空间中的距离越小。同时,向量化的表示方法通过利用丰富的数学表达式极大提升了知识图谱的可计算性。但目前大多数研究工作较为分散,底层实
学位
作为给水处理常用基质,麦饭石应用于污水处理,特别是含重金属废水时,面临自身吸附容量低、易吸附饱和等问题。层状双金属氢氧化物(Layered Double Hydroxides,LDHs)比表面积大、吸附性能好,但若将晶体粉末状的LDHs直接应用于人工湿地等生态修复工程,会导致后期固液难以分离、易于堵塞等问题。因此,为拓展麦饭石基质和LDHs的应用范围,提高其对水体中Cr(Ⅵ)的净化效果,本实验利用
学位