低温等离子体协同硫酸根自由基降解苯并杂环化合物的研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:woainiyuying
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
苯并三唑(BTA)和苯并噻唑(BTH)是两类典型的苯并杂环化合物,它们由苯环稠合一个杂环而成,化学结构稳定,近年来被广泛应用于工业、农业和医药等行业中,导致其在污水、地表水、地下水和自来水中被普遍检出。由于该类化合物水溶性好、难生物降解且具有一定的生物毒性,若进入水体将对生态环境造成极大破坏。目前,传统废水处理技术对这类化合物的降解效果并不理想,因此为了保障日常饮用水安全,有必要开发一种高效、快捷、绿色降解苯并杂环化合物废水的水处理技术。介质阻挡放电(DBD)等离子体技术是一种集臭氧氧化、自由基氧化、紫外光解和高能电子辐射等多种物化效应于一体的新兴水处理技术,具有处理效果好、时间短、操作简单等优点。本文以BTA和BTH为目标有机污染物,协同DBD等离子体与硫酸根自由基技术降解苯并杂环化合物模拟废水,并对该技术的可行性、影响因素、协同反应机理等展开研究。
  首先,考察了苯并杂环化合物在DBD等离子体中的降解情况。实验发现,BTA和BTH经20min的等离子体处理降解率分别为49.0%和55.2%,且溶液pH越低、溶液电导率和放电电压越高时,BTA降解效果越好;其中,当溶液电导率大于930μs/cm时,污染物的降解效率不再受电导率的影响。对DBD等离子体降解机理初步探讨发现,溶液中O3和H2O2浓度会随放电时间增加而增加,等离子体放电产生的?OH对有机物降解发挥了重要作用。
  其次,研究了DBD等离子体分别协同过一硫酸盐(PMS)和亚硫酸盐(Na2SO3)降解苯并杂环化合物的可行性,并对协同系统的影响因素和反应机理进行了探讨。结果发现,溶液pH、PMS/Na2SO3投加量和放电电压均会对协同体系的污染物降解效果造成显著影响;与单独采用DBD等离子体相比,引入PMS和Na2SO3可使污染物的降解效率分别提高48.0%和24.9%,同时等离子体体系的能量利用率分别提高84.0%和36.3%。协同效应的产生归因于PMS和Na2SO3在DBD等离子体中的活化,而机理研究表明,PMS和Na2SO3的添加不仅向等离子体体系引入了SO4??,而且显著增加了体系中O3、H2O2和HSO5?的产量。通过自由基屏蔽实验发现,除?OH和SO4??外,电子(e?),超氧阴离子自由基(?O2?)和单线态氧(1O2)也对协同体系中污染物的降解做出了重要贡献。此外还通过LC-MS分析了BTA降解产物,并发现这些中间产物主要通过苯环开环途径(包括苯环上的取代、加成、裂解等反应)和三唑环开环(包括三唑环上的羟基化、二聚化等反应)途径形成;产物的毒性评估结果表明,经20min的DBD-PMS协同处理可有效降低BTA的大鼠口服毒性和发育毒性。
  最后,考察了不同浓度氯离子、碳酸盐和腐殖酸对DBD-PMS和DBD-Na2SO3协同体系中污染物降解效果的影响,并通过几种实际水质条件下BTA和BTH的降解实验,确定了水体背景成分对有机物产生了抑制作用,但在处理效果最差的二沉池尾水水质中,20min内协同体系对污染物的降解率仍高于40.68%。结合DBD-PMS协同体系中的能量利用率几乎翻倍的结论,本研究验证了DBD等离子体联合SO4??协同技术在实际废水处理中的可行性,并为苯并杂环化合物废水的处理提供了一种高效、绿色、快速降解的新方案,也为低温等离子体协同技术的开发和应用提供了新的思路。
其他文献
随着我国国民经济快速发展,内陆工程地基环境不断恶化,逐渐呈现土体资源少,工程造价贵,建设难度高的特点,迫使我们将工程建设的目光转向海洋。挤密砂桩作为一种常用地基处理技术,以施工速度快、适用范围广、加固效果明显等特点在地基处理中具有无可比拟的优势。挤密砂桩已经被世界各国广泛运用于近海水下大面积地基加固处理。我国水下施工砂桩技术起步较晚,但进展较快,已陆续在连云港围堤工程、汕头港珠池港区二期工程、天津港码头工程,洋山深水港码头接岸工程,港珠澳大桥岛隧工程等成功运用。
  挤密砂桩在软黏土地基中的施工,将
地球现在处于一个地震活跃期,近年以来,高强度地震频发,给人民生命和财产安全造成伤害。我国地势位置特殊性,在西部地区、西北地区存在着很多的自然边坡,在我国的基础设施建设和经济发展等方面也产生众多的人工边坡。预应力边坡加固技术,加固支护效果优良,具有很强的抗震性能,并且可以和别的加固措施协同使用,具有很强的工程应用前景。目前针对预应力锚固岩质边坡的稳定性研究,仍处于比较初级的阶段,需要对其深入的进行的研究。
  本文针对预应力锚固岩质边坡这一类特殊的边坡类型,使用理论计算和数值模拟相结合的研究方法,研究
水资源短缺风险评价是一个涉及水资源状况、生态环境及社会经济在内的多目标决策问题,影响水资源短缺的因素大多数都具有一定的随机性、模糊性及不确定性,并且各因素具有相互制约、关联的模糊关系,使得系统的分析存在较大的困难。本文以郑州市为例,对水资源短缺风险进行了评价和分析,主要研究成果如下:
  (1)为了较为全面准确对郑州市水资源短缺风险评价,构建了涵盖水资源、社会状态及用水管理这3个子系统在内的评价指标体系。
  (2)本文提出一种基于熵权-G1法相融合的风险指标权重计算方法,克服了单独赋权法带来
吲哚二酮哌嗪生物碱是一种内生真菌次生代谢产物,多提取自曲霉属Aspergillus和青霉属Penicillium,其中 spirotryprostatin 类化合物是吲哚二酮哌嗪生物碱中结构特殊而复杂的一类化合物,其吲哚环与二酮哌嗪环之间是一个五元氮杂环,在其吲哚3位形成了一个手性的螺氧化吲哚季碳原子。吲哚二酮哌嗪生物碱具有广泛的生物活性(抗肿瘤、抗癌、抑菌、免疫调节、抗氧化及杀虫活性等),spi
针对国内外较少探讨除草剂工业生产过程中产生的实际废水应用O3/UV处理,尤其是杂环取代脲类除草剂生产废水的降解,本文采用O3/UV技术,研究了特丁噻草隆生产废水的水质特性,并对特丁噻草隆的紫外光谱特性进行了大致实验分析,考察了O3/UV技术降解特丁噻草隆有机废水过程中的臭氧氧化机理,并对降解过程中不同臭氧投加速率,不同初始COD浓度,以及不同初始pH值等因素对降解特丁噻草隆有机废水的影响进行了考察。讨论了O3/UV降解前后,特丁噻草隆有机废水的可生化性,总有机碳,紫外光谱,高效液相色谱的变化;同时研究了降
浮球式惯性平台是一种新型无框架稳定平台,其采用浸没在液体中的稳定球体建立测量载体运动的参考坐标系。由于球体被液体包裹且受到静压支承系统的全方位支承,因此浮球平台能够适应载体的大过载、高动态机动和强振动环境,可作为高超声速飞行器和新型战略导弹的理想导航系统。球体在惯性空间保持稳定是浮球平台作为导航系统的基础,本文将针对球体稳定的相关技术进行研究,研究成果可为我国的浮球平台研制提供理论和技术方面的支持。本文的主要研究内容如下:
  1.分析了载体运动情况下自由球体的运动特性。球体的配重误差导致球体密度与
地面物体的定位、空间飞行器的导航和跟踪均需要用到天球与地球坐标系的精确变换矩阵,而地球定向参数描述了这种转换关系。现代空间大地测量技术得到的观测数据需要较长时间的分析,不能实时获取EOP值,最终导致EOP值的获取在时间上滞后,对于需要实时EOP数据的应用造成了很大影响,使得EOP的预报成为研究的热点问题之一。EOP的预报受到多种地球物理因素的干扰,预报难度比较大。论文从EOP的理论设计出发,围绕EOP的预报及其对导航卫星轨道计算中的影响开展研究,可为EOP预报和航天器轨道计算提供重要参考。论文的主要研究工
餐厨垃圾(food waste)具有资源和废物的二重性,适当地利用现有的技术对其进行资源化处理可带来经济、环境与社会效益。水热炭化技术可以将有机垃圾转化为功能性碳素材料,受到研究学者的关注。本文针对餐厨垃圾含水率高、有机物含量高、产量大等特点,以资源化利用为目的,开展餐厨垃圾水热炭化的理论与应用研究。主要研究内容和成果如下:
  ①研究水热炭化原料的化学组成对水热炭产物理化性质的影响。结果表明:水热炭化的主要产物是水热炭与水热液,气体仅占极小的比重。碳水化合物是促进水热炭形成的重要组分。蛋白质无法单
近年来,高浓度有机废水的处理与处置已成为中国水处理方面的重点和难点,吸附技术因其操作简单、经济廉价和出水水质好等优点,被认为是处理废水污染最有应用前景的处理手段之一。氢氧化锆是两性氧化物,碱性较强,在生产生活的多个行业都有应用,如颜料、玻璃等化工行业,研究中发现其对有机物的吸附有很大潜力,但查阅现有文献,发现对其吸脱附性能和吸附机理尚未有相关研究。
  本论文研究了氢氧化锆对高浓度有机废水的吸附、脱附性能,探讨了废水初始pH、吸附剂投加量、吸附温度和吸附时间对吸附效果的影响;采用NaOH溶液浸泡对吸
随着中国城镇化发展加快以及人口不断增长,城镇污水和污泥产量也随之增加。然而,传统的污泥处理处置技术已不能达到现阶段“稳定化、减量化、无害化、资源化”的处理要求。水热碳化技术利用其不受含水率限制、脱水性能强及产物可进行资源化利用等优势,现已成为污泥处理处置领域的一项新兴技术。因此,本研究以重庆市某污水处理厂的浓缩污泥作为水热碳化反应原料,针对反应条件对水热碳化的影响进行了深入探究,具体工作内容如下:
  首先,通过设置200℃、220℃、240℃和260℃四个反应温度和2h、4h、6h三个反应时间共1