论文部分内容阅读
设备故障诊断是一门各学科交叉的新技术,近年来,得到了迅速发展并产生了巨大的经济效益。离心泵的故障易使设备产生振动,振动信号中包含了丰富的泵体运行状态信息,且易于拾取便于诊断。由于离心泵故障振动信号是非平稳信号,因此有必要选择恰当的适合于非平稳信号分析的信号处理方法。常用的时频分析方法如窗口傅立叶变换、小波变换等都有各自的局限性。隐Markov模型(Hidden Markov Model,HMM)克服了传统诊断方法只停留在静态观测的缺陷,非常适合于描述短时平稳的非平稳信号,经验证其故障信号分类结果优于其它信号处理方法。二维隐Markov模型(2D-HMM)作为HMM的一般化模型,它由外部HMM和基于外部HMM各状态的内部HMM两部分组成。因而它具有HMM的优点,且从时域和频域两个角度全面地描述信号,非常适合于处理离心泵运行过程中出现的非平稳性强、重复再现性不佳的信号。本论文研究以基于2D-HMM的离心泵故障诊断方法为目的,结合吉林省教育厅科学技术研究项目(No.2007047),采用理论研究与实验测试相结合的方法,提出基于2D-HMM的振动信号分析与故障识别,并通过2BA-6A离心泵试验系统验证了该方法的有效性。首先,简要介绍了本论文研究背景,选题意义及2BA-6A离心泵试验系统中各设备的参数、性能及具体的实验设置、实验方法。其次,从标准的HMM基本理论和算法入手,描述了2D-HMM的主要类型、参数和拓扑结构,并讨论了它的主要算法和实际应用中遇到的问题及解决策略,同时对HMM和2D-HMM从模型结构、参数描述和算法复杂度三个方面进行对比。接着,提出基于2D-HMM故障诊断方法,归纳其可行性及特点,并介绍利用其进行诊断的基本步骤和实现方法。在总结离心泵常见故障及其振动特征的基础上,给出2D-HMM在离心泵故障诊断中的模型选取等参数设置。最后,在介绍本论文所采用的几种信号特征提取方法的基础上,结合2BA-6A离心泵试验系统,对离心泵振动信号进行分析与分类,验证了基于2D-HMM的离心泵故障诊断方法的有效性。