【摘 要】
:
不适定反问题在当今众多的科学领域中都有着广泛的应用,经典的正则化方法是针对这类问题设定的计算平稳解的有效方法和手段。但是在求解其大规模离散问题时,这些方法往往显得不适当,不充分——“捉襟见肘”。迭代法在数值计算中表现的特点,体现了它在求解这类问题时的卓越之处:计算过程中收敛快:矩阵不用被分割改变,甚至不用被表示,而仅以4和AT矩阵-向量乘积运算的形式出现;采用原子运算,方便进行并行计算。这些优点都
论文部分内容阅读
不适定反问题在当今众多的科学领域中都有着广泛的应用,经典的正则化方法是针对这类问题设定的计算平稳解的有效方法和手段。但是在求解其大规模离散问题时,这些方法往往显得不适当,不充分——“捉襟见肘”。迭代法在数值计算中表现的特点,体现了它在求解这类问题时的卓越之处:计算过程中收敛快:矩阵不用被分割改变,甚至不用被表示,而仅以4和AT矩阵-向量乘积运算的形式出现;采用原子运算,方便进行并行计算。这些优点都非常适合大规模离散问题的求解计算。当然“半收敛”现象阻碍了这种方法在实际计算中的应用,使得在实际得到的计算解不能很好的保证一种收敛到真实解的状态。本文的目的就是突破这种迭代型正则化方法的“半收敛”现象的限制,发展和改进迭代法在离散不适定反问题中的计算效果,并给出相应的杂交型正则化方法的形式。 简要的介绍了不适定反问题的各种正则化方法和相关知识。特别地对LSQR迭代算法做了详细的分析,事实上LSQR迭代是经典不适定反问题和图像重构领域里的优秀计算方法。它采用Lanczos型双对角化技术,很少的迭代步数就可以与真实解很接近,它的半收敛性也是明显的。通过实际问题中噪音的分析,和LSQR迭代的计算特点讨论,提出了一个以Lanczos双对角化为基础的改进型算法LSD迭代。这种方法很好的改进、减弱了LSQR迭代过程中的半收敛性。这样可以让计算解有更多的迭代步数接近于真实解。应用LSD算法与常规的正则化参数选取方法结合,作为一种迭代型正则化方法。此外,对LSD型杂交正则化方法进行了较为深入的说明。针对不适定问题和图像重构中的去噪音模糊的经典数值例子,给出了两种方法的计算效果。 通过经典实例发现,这种算法符合预期,有效地改进、减弱了LSQR迭代方法的半收敛性。为其它各种迭代型止则化方法平稳半收敛性的改进带来了新的思想。这种方法将来可以直接替代LSQR算法应用在实际的不适定反问题的求解中,同时相应的杂交化止则化办法也是一个很好的选择。
其他文献
在自然科学和社会科学领域中广泛存在着非线性问题,而非线性问题的研究最终可由非线性发展方程来描述,因此,非线性发展方程一直以来都是非线性科学领域的研究热点之一.李对称法是研究非线性发展方程的有力工具之一.基于经典李对称方法,本文研究了两类非线性发展方程的一般对称群和新的精确解,包括行波解、幂级数解. 在第二章中,主要研究了Sharma-Tasso-Olver (STO)方程.利用直接对称法,
自然界中许多生物,物理,化学问题的数学模型都可以用微分方程的形式给出,而这些微分方程的精确解大多数是无法求出的.随着计算机技术的迅速发展,可以利用计算机求方程的数值解或者模拟这些现象.无网格方法是近年来迅速发展起来的一种新兴的科学计算方法,它任意选取求解域内的坐标点构造插值基函数的组合逼近微分方程的解,不需要或较少的需要网格剖分,这样就可以很容易的模拟许多复杂的自然现象.目前,这种方法已经成为求解
本文主要通过将李群打靶方法与修改边界的正则化方法相结合来解决两个经典不适定问题,即:圆环形区域内的逆热传导问题和一般环形区域内的椭圆方程Cauchy问题。由于这两个问题是不适定的,我们首先利用修改边界的正则化方法将其转化为适定的问题,紧接着利用半离散化的思想将所求解的适定问题转化为常微分方程组的两点边值问题,然后结合李群的结构和性质及群保守策略(GPS)导出所要求解的非线性打靶代数方程组,进一步通
本文主要利用变分法考虑了一类带参数的四阶差分方程边值问题多个解的存在性和二阶差分系统周期解解的存在性和不存在性.在第一章介绍了问题的背景、研究现状和本文的主要结果以及一些预备知识,第二章考虑四阶差分方程多解的存在性.我们建立了合适的函数空间,在此函数空间上根据方程建立相应的变分泛函,将此边值问题解的存在性转化为泛函在函数空间上临界点的存在性,再利用山路定理、Clark定理和环绕定理等临界点定理得到
发状念珠藻(Nostoc flagelliforme)是一种极端环境条件下生长的微生物,分布于干旱半干旱地区,同时发现也能在低温环境中生长。我们以人工培养的发状念珠藻悬浮细胞为研究材料,通过比较分析4℃低温胁迫下和20℃正常培养条件下的生长状态和生理特性的变化,阐释发状念珠藻在极端环境下得以生存的适应机制。研究结果归纳如下: 1.4℃低温胁迫处理15天后,发状念珠藻悬浮细胞的形态特征稍有变
假设有三个非奇异矩阵A,B,C,且其乘积ABC的逆存在,那么矩阵乘积的逆满足下列的反序律:(ABC)-1=C-1B-1A-1.其逆也可以表示成如下的混合反序律的形式:(ABC)-1=(BC)-1B(AB)-1.然而若乘积ABC非奇异,那么这种所谓的混合反序律对于矩阵的广义逆而言就未必成立了.因此,矩阵广义逆理论的诸多基本研究问题之一便是如何找到矩阵的广义逆混合反序律成立的充分必要条件.自从二十世纪
高山冰缘植物是一类生存环境特殊(高寒,强风,强紫外线等)的群体,其繁殖过程受到很大的阻力。本研究立足于揭示高山冰缘植物的繁殖机制,以高山冰缘植物山羊臭虎耳草为研究材料Saxifraga hirculus L. (Saxifragaceae),材料采于天山乌鲁木齐河源区一号冰川。利用石蜡切片,树脂切片,扫描电镜,透射电镜系统研究了山羊臭虎耳草雌雄配子体的发育及其超微结构,主要结果如下: 1、
本文研究了带有非线性边界条件的p-拉普拉斯方程Neumann边值问题.其中Ω是RN(N≥2)中的有界光滑区域.通过对非线性项f(x,u)与h(x,u)进行适当的假设,我们基于变分方法得到方程(P)的弱解的存在性及唯一性.
本文讨论动力气象学中大气运动基本方程组在交替网格上的四阶有限差分方法及其收敛性分析。通过对一阶和二阶导数的四阶近似,边界虚点值的单边展开和四阶插值算子得到方程组的四阶离散格式。通过引入与精确解四阶相容的构造解作为中间量,完成收敛性证明。构造解中引入Poisson方程,从而可以利用Schauder估计得到构造解与精确解的误差。最后利用Grornwall引理证明数值解和构造解的误差也是四阶的。
本文研究了一类具有时空时滞和非局部扩散的媒介传染病模型的波前解的存在性和稳定性。 首先,考虑了一类具有更一般非线性项的方程的波前解的存在性。主要方法是把方程的波前解的存在性转化为相应算子的不动点的存在性问题,然后利用Schauder不动点定理和上下解技术,在单调条件假设下证明方程波前解的存在性可以由一对适当的上下解来保证。作为应用,证明了媒介传染病模型波前解的存在性。 其次,研究了具有