论文部分内容阅读
AlGaN/GaN异质结场效应晶体管(HFETs)作为GaN材料在电子器件应用中的重要代表,近二十多年来备受关注。一方面,AlGaN/GaNHFETs有效地发挥了 GaN材料本身所具备的大的禁带宽度、高的击穿电压、高的饱和电子漂移速度、良好的抗辐射和抗腐蚀等优异特性;另一方面,由于AlGaN/GaN异质结材料中自发极化和压电极化的存在,使得在AlGaN势垒层无需掺杂的情况下,便可在AlGaN/GaN异质结界面处产生电子面密度高达~1 × 1013 cm-2,电子迁移率高达~2000 cm-2/V·s的二维电子气(2DEG),这不仅有效的弥补了 GaN本身由于电子有效质量大而造成的电子迁移率低(~1000 cm-2/V·s)这一不足,也避免了掺杂带来的电离施主杂质散射的影响,从而为器件提供了性能优越的沟道输运层。AlGaN/GaNHFETs的这些特点,使它在高频大功率领域具有独特的优势,在军事领域中的雷达通信、电子对抗,民用通信中的5G应用、小型基站、新型通信微型卫星,电力传输,以及汽车电子中有着广阔的应用前景。因此,研究AlGaN/GaNHFETs,对于提高我国的军事力量和民用设备性能,具有重要意义。从1993年第一只AlGaN/GaNHFETs问世,经过长达25年的研究,AlGaN/GaN HFETs完成了从起初各性能适中的蓝宝石衬底,到低失配、高热导率的SiC衬底,到低成本、易集成的Si衬底的探索,在器件功率密度、频率特性、击穿特性和增强型器件制备等方面进行了多方位的研究,并取得了一系列突破性成果。目前,虽然以AlGaN/GaNHFETs为核心的产品已投入市场应用,但一些相关问题仍亟需解决:AlGaN/GaN HFETs器件物理模型亟需完备;小尺寸AlGaN/GaN HFETs器件电学特性的理论研究亟需完善;作为功率放大器的核心器件,AlGaN/GaNHFETs的非线性失真问题亟需解决。极化库仑场(polarizaiton Coulomb field,PCF)散射,起源于 AlGaN/GaN 异质界面处极化电荷分布不均匀,是和AlGaN势垒层应变分布相关的一种散射机制。欧姆接触金属原子在欧姆退火工艺中的横向扩散,以及栅偏压引起的逆压电效应,都会改变AlGaN势垒层的应变,造成AlGaN/GaN异质界面处极化电荷分布不均匀,导致PCF散射产生。研究发现,PCF散射对AlGaN/GaN HFETs器件特性具有重要影响。从2007年PCF散射提出到现在,经过十多年的研究,已形成了 PCF散射完善的研究方法和理论体系。但是如何利用这一散射体系,有效地提高器件性能参数,将之应用于器件实际工作中,是当前面临的一个重要问题。本论文基于PCF散射理论,结合AlGaN/GaN HFETs当前面临的问题,以将PCF散射理论应用于实际器件参数分析和性能提升作为研究重点,利用PCF散射理论,从准确确定器件载流子迁移率、分析小尺寸器件载流子迁移率特性、利用栅长的设计和栅偏压的选择提高器件性能、提高器件线性度等方面开展具体的研究工作。具体研究包括以下内容:1.一种准确确定AlGaN/GaN HFETs载流子迁移率的方法首先,基于二维散射理论,对AlGaN/GaN HFETs中PCF散射的形成和理论模型的建立进行了详细介绍。之后,对传统方法计算载流子迁移率的局限性进行了分析。传统意义上对栅下2DEG电子迁移率的求解,是基于栅下沟道2DEG受到栅偏压的调控,而栅源通道电阻Rs和栅漏通道电阻RD不随栅偏压的改变而改变,即Rs和RD为固定值这一原则(本论文中,栅源通道电阻Rs和欧姆接触电阻RC之和为源串联电阻,栅漏通道电阻RD和欧姆接触电阻RC之和为漏串联电阻,Rs和RD均不包含欧姆接触电阻RC)。但是,随着栅偏压的改变,由于逆压电效应,栅下AlGaN势垒层具有不同的应变变化,栅下极化电荷会随之改变,导致PCF散射会随栅偏压改变。PCF散射对栅源、栅漏和栅下三部分载流子都有散射作用。RD和RD因受PCF散射的影响,不再是定值,而会随栅偏压变化,这样一来传统方法将不再适用。为此,从PCF散射对Rs和RD的影响出发,通过测得的电流-电压(Ⅰ-Ⅴ)输出特性曲线和电容-电压(C-Ⅴ)曲线,基于二维散射模型,采用迭代计算的方法,提出了一种准确确定栅下2DEG电子迁移率的方法。运用这一方法,计算了漏源间距为20 μm,栅长为4 μ和16 μm的两样品的载流子迁移率。并与传统方法进行对比,发现栅长越大的器件,PCF散射对Rs和RD的影响越强,新方法和传统方法的差别越大。最后,基于得到的2DEG电子迁移率,计算得到器件的跨导,并与跨导测试值进行对比,证明了这一方法的准确性。2.小尺寸AlGaN/GaN HFETs载流子迁移率的研究采用T型栅、n+-GaN欧姆接触再生长、SiN钝化等工艺,制作了栅长为70 nm,栅源间距为300/600nm,栅宽为20/40 μm的AlGaN/GaNHFETs。依据测得的Ⅰ-Ⅴ输出特性曲线和2DEG电子面密度,基于PCF散射,采用迭代计算的方法,提取出小尺寸AlGaN/GaNHFETs栅下2DEG电子迁移率和栅源/栅漏通道电阻。分析发现,栅下2DEG电子所受PCF散射在所有散射中占主导地位,其电子迁移率随栅偏压增大(栅偏压增大是指从负偏压向正偏压变化)而增大。并且,漏源间距越大或栅宽越大的器件,2DEG电子迁移率越低。这是由于漏源间距或者栅宽的增大,有效地增大了栅源和栅漏区域内的附加极化电荷数目,从而对栅下2DEG电子的PCF散射作用增强。Rs和RD随栅偏压的降低(栅偏压降低是指从正偏压向负偏压变化)而增大,并且,漏源间距小的器件或者栅宽大的器件,Rs和RD的增大更加明显。这是由于栅长不变,漏源间距减小,栅源和栅漏间距随之减小,栅下附加极化电荷对更小的栅源和栅漏沟道中的2DEG电子的PCF散射增强;栅宽增大,导致栅下附加极化电荷数目增多,对栅源和栅漏沟道电子的PCF散射作用也增强。研究表明PCF散射对小尺寸AlGaN/GaN HFETs器件载流子迁移率具有重要影响,减弱PCF散射,可有效地提高小尺寸AlGaN/GaN HFETs器件性能。3.不同栅长和栅偏压对AlGaN/GaNHFETs极化库仑场散射势和栅源通道电阻RS的影响研究制作了漏源间距为20 μm,栅长分别为4 μm、10 μm和16 μm的AlGaN/GaN HFETs,测试得到器件的Ⅰ-Ⅴ输出特性曲线和C-Ⅴ曲线。通过选用不同的2DEG电子波函数和PCF散射势,提出了两种计算PCF散射的方法,并结合其它散射机制,计算了漏源沟道电阻值。与实验测试值进行对比发现,不同栅长和栅偏压对PCF散射势有着不同的影响。对于栅长小的器件,应选择栅源和栅漏区域的2DEG电子波函数,及栅下区域附加极化电荷进行PCF散射的计算。对于栅长大的器件,应选择栅下区域的2DEG电子波函数,及栅源和栅漏区域的附加极化电荷进行PCF散射的计算。对于栅长长度居中的器件,两种方法计算的漏源沟道电阻都和实验值有着一定的差别。这主要是由于PCF散射理论模型是基于微扰理论建立的,只有PCF散射势相比系统的哈密顿量是小量,才能保证PCF散射计算结果的准确性。此外,随着栅偏压向负偏压不断降低,PCF散射不断增强,PCF散射势能不断增强,这也会降低PCF散射理论计算的准确性。由此得知,不同栅长和栅偏压可以影响器件的PCF散射势,只有尽可能的选择小的PCF散射势所对应的系统哈密顿量,才能符合微扰理论的适用性,从而保证PCF散射理论模型计算的准确性。制作了栅源间距为3μm,栅漏间距为6μm,栅长分别为3μm、6μm和10μm的AlGaN/GaN HFETs,采用栅探针法测试了器件的栅源通道电阻Rs。分析发现:不同栅偏压或栅长下,相同栅源间距的器件Rs呈现不同的电阻值;随栅偏压的增大,3 μm栅长的器件Rs单调下降,6 μm栅长的器件Rs先下降后上升,10μm栅长的器件Rs单调上升。这种Rs的变化被认为是PCF散射造成的。栅下正的附加极化电荷和欧姆区域负的附加极化电荷,在PCF散射势中存在着抵消作用,栅偏压或者栅长的增大会增加栅下正的附加极化电荷数目,改变PCF散射,从而影响Rs。这一结果通过实验计算得到了很好的验证,并使得改变器件栅长或者选择合适的栅偏压,有效改善Rs进而提高器件线性度成为可能。4.极化库仑场散射对AlGaN/GaN HFETs器件线性度的影响研究制作了栅长为100 nm,漏源间距为2 μm和4 μm的AlGaN/GaN HFETs器件,选取漏源偏压VDS = 10V(a-g)和漏源偏压改变(A-G)的两种不同类型的静态工作点,基于两种不同静态工作点下的小信号测试,得到了器件的功率增益。对比发现A-G比a-g的功率增益变化更加平缓,即A-G具有更好的器件线性度变化,并且这种线性度的提高在小的漏源间距器件下更加明显。研究表明栅偏压的增大或者漏源偏压的减小,都可以减弱PCF散射,而PCF散射的减弱,可有效地补偿随栅偏压增大而增强的POP散射,从而减小Rs的变化程度,减缓器件跨导、截止频率和功率增益随栅偏压的下降趋势,进而提高器件线性度。制作了栅长为1 μm,漏源间距为6 μm,栅宽分别为546 μm和780 μm的AlGaN/GaNHFETs,并进行了器件输入输出匹配下的功率测试。发现栅宽越大的器件,其功率增益变化越平缓,线性输出特性越好。对栅源沟道中电子温度进行求解,发现两样品栅源沟道电子温度几乎相同,POP散射所决定的Rs部分几乎一致,其随栅偏压的增大而增强;而两样品栅宽不同,栅下附加极化电荷数目不同,所以PCF散射强度不同,栅宽大的器件具有更多的附加极化电荷,因而具有更强的PCF散射。PCF散射决定的Rs部分随栅偏压的增大(栅偏压增大指从负偏压向正偏压变化)而降低,而POP散射决定的Rs部分随栅偏压的增大而增大,这样,PCF散射增强可以使Rs随栅偏压的变化(从负偏压向正偏压变化)减小。最后,对计算得到的Rs进行对比,发现栅宽大的器件Rs呈现更平缓的变化。在实验测试和理论计算上证明了增大器件栅宽,可以提高器件PCF散射,从而提高器件线性度。制作了栅源和栅漏间距都为1 μ,栅长分别为0.5 μm、0.35 μ和0.25 μm的AlGaN/GaN HFETs。通过跨导测试分析,发现栅长越大的器件,其跨导变化更加平缓。输入输出匹配下的功率测试表明,栅长越大的器件,其1-dB压缩点对应的输入功率(PIN-1dB)越高,即器件线性度越好。理论计算了器件各散射机制对应的Rs和总的Rs,发现栅长大的器件,其栅下附加极化电荷多,PCF散射强。同样,PCF散射增强可以使Rs随栅偏压的变化减小(与增大栅宽的情况相同),从而增大器件栅长可有效地提高器件的线性度。基于不同漏源间距、不同栅宽和不同栅长的器件实验证明和理论分析,结合PCF散射,提出了一种提高AlGaN/GaNHFETs器件线性度的方法,即通过采用薄的势垒层、挖栅槽工艺、高A1组分AlGaN势垒层、增大栅长/栅源间距比、增大栅宽、采用背势垒结构等工艺手段,可有效增强PCF散射,抵消POP散射,减弱Rs随栅偏压的变化,从而提高器件线性度。这一方法具有简单、直接、可操作性强和集成度高等优点,可实现在器件层级对GaN功率放大器线性度性能的提高,具有十分重要的应用价值。