论文部分内容阅读
我国西部地区水能资源丰富,安全、合理地开发对促进西部地区经济发展和民族团结,改善产业结构和生态环境,具有重要的政治和经济意义。然而,西部地区地质构造复杂、河床覆盖层深且不均匀,活断层多、地震频发且强度大,给水电开发带来诸多重大技术难题。伴随高土石坝工程建设的重大需求,近几十年来土石坝分析方法取得长足进展,但对于深厚覆盖层上修筑土石坝仍处于起步阶段,缺乏经验。河床覆盖层土体的复杂变形特性、动力非线性及可液化性等给准确获取大坝防渗结构的变形及应力状态、大坝地震响应特性乃至是抗震安全评价带来了诸多难题。土石坝土质心墙与坝基防渗墙的防渗接头是深厚覆盖层上大坝防渗系统的薄弱环节。已有研究主要基于小变形分析方法,可以反映大坝的整体变形规律,但不能合理描述河床覆盖层变形导致的接头部位大变形问题,难以评价其安全性。混凝土防渗墙是控制覆盖层坝基渗漏至关重要的防渗结构。然而,目前有关墙体在三维复杂受力条件下的变形及应力特性的认识不深,且基于线弹性分析和强度标准的墙体安全评价存在较大局限性。此外,目前在土石坝的地震响应分析中地震动输入仍普遍采用一致输入方法,无法准确反映无限域-地基-大坝相互作用;并且大坝的地震响应、液化及稳定等问题的研究大都孤立地开展,难以合理评价多因素耦合效应下深厚覆盖层上土石坝的抗震安全。针对上述问题,本文在国家自然科学基金重大研究计划重点项目“高土石坝地震灾变模拟及安全控制方法研究”(No.90815024)和集成项目“高土石坝地震灾变过程模拟与集成研究”(No.91215301)以及教育部新世纪优秀人才支持计划“高土石坝地震反应仿真系统研究”(No.NCET-12-0083)的资助下,对深厚覆盖层上土石坝静动力分析方法开展系统研究,以解决深厚覆盖层上土石坝安全评价中存在的关键技术难题。本文主要工作如下:(1)在大坝整体采用UpdatedLagrangian(简称UL)法分析的基础上,对不均匀沉降较为突出的局部位置采用 Remeshing and Interpolation Technique with Small Strain model(简称RITSS)法分析,实现局部网格重剖分及信息映射技术,集成土石坝工程常用的本构模型,从而建立了深厚覆盖层上土石坝大变形分析方法,并基于VC++平台开发了相应的计算软件。通过算例验证了本文大变形法的有效性、可靠性及基于单元形函数插值的信息映射方法的适用性。(2)采用不同分析方法研究了深厚覆盖层上土质心墙坝工程中防渗接头部位土与结构相互作用特性。常规小变形分析可以反映大坝的整体变形规律,但不能准确描述防渗接头部位的变形特性,低估了墙顶土体对防渗墙贯入的抑制作用。本文大变形法解决了局部单元畸化问题,并较好地模拟了防渗墙贯入高塑性粘土的变形过程,获得的高塑性粘土区应力水平及墙体应力均大于小变形分析结果,且墙顶土体在水平方向的变形相对较大。为确保防渗接头部位的抗渗安全,基于应力状态和有效厚度,采用大变形分析方法可优化确定高塑性粘土的范围。(3)研究了深厚覆盖层中混凝土防渗墙的变形应力特性,探讨了墙体拉应力的产生机理及发展规律。为合理描述防渗墙弯曲变形模式下的应力状态,集成了三维非协调元。结果表明:在上游水压力和河谷基岩约束的共同作用下,防渗墙顺河向变形使墙体处于弯曲状态,导致防渗墙下游面岸坡附近墙体产生拉应力。随岸坡附近墙体拉应力区向深度方向扩展,拉应力与墙面的夹角逐渐减小。另外,河谷地形对墙体的拉应力方向、峰值及发展深度影响显著。当河谷底部较宽时,防渗墙底部会出现竖向拉应力。(4)采用线弹性分析获得的防渗墙拉应力峰值会远超材料屈服强度且拉应力范围较大,低估墙体安全性。基于自主开发的有限元平台,二次开发了混凝土的塑性损伤模型,并验证了其有效性。在此基础上,开展了土石坝坝基覆盖层中混凝土防渗墙的三维损伤特性分析。计算表明:由弯曲变形导致的防渗墙拉损伤主要在墙体下游侧出现,并随蓄水位的上升逐渐向深度方向扩展。塑性损伤分析较好地描述了墙体损伤局部化及损伤后应力重分布特性,得到的拉应力范围及峰值均较线弹性分析结果明显减小。根据墙体损伤程度及损伤后的应力状态明确了防渗墙的危险位置。(5)采用深厚覆盖层中混凝土防渗墙的精细分析模型,研究了防渗墙墙段间接头缝夹泥的影响。将防渗墙作为连续结构模拟时,低估了各墙段间变形的协调能力及墙体底部受压破损的危险性。墙段宽度与接头缝参数影响了墙段间的相互作用及河谷岸坡对墙体的支撑及约束作用,导致墙体的损伤范围及程度变化明显。满蓄期,防渗墙下游侧部分接头缝张开,降低拉损伤程度,但会造成墙体有效防渗厚度减小。(6)通过敏感性分析探讨了地震一致输入方法获得的覆盖层上土石坝加速度反应的误差,并对考虑地基非线性的地震动输入方法开展研究。一致输入方法分析结果的误差与地震波频谱特性及地震动方向存在紧密联系。一致输入方法的竖向加速度峰值结果平均为波动输入方法的2倍,且误差明显大于水平向。采用侧向位移一致的边界条件与底部粘性人工边界建立了自由场非线性地震响应分析的简化模型,提升了计算效率并具有较高精度。联合自由场地震响应分析的简化模型及非线性人工边界,发展了适用于深厚覆盖层上土石坝工程的考虑地基非线性的地震动输入方法,减小了有限元分析的单元规模,并获得了合理的大坝地震响应。(7)以500m超深覆盖层上的土石坝工程为研究对象,研究强震作用下覆盖层上土石坝的地震响应特性,探讨了液化及稳定安全评价的分析方法。与地基底部的加速度峰值相比,覆盖层对加速度反应表现出放大效应。由于上、下游坝料模量的差异,坝体内部加速度的空间分布变化较大。坝-基动力相互作用使覆盖层顶加速度反应强度减弱的两个主要原因是:一、坝体重力增强了覆盖层土体模量空间分布的差异;二、坝体材料阻尼吸收了地震波能量。基于有效应力地震响应分析的液化分析方法合理地反映了孔压上升使土体模量衰减导致的动剪应力比减小,砂层液化可能性较常规总应力法有所降低。基于地震波动输入及有效应力地震响应的大坝稳定分析方法不仅反映了大坝的实际加速度分布规律且解决了可液化砂土强度参数难以确定的关键问题,获得的滑弧位置与深度均较常规方法更为合理。