论文部分内容阅读
超表面是一种由亚波长结构组成的超薄平面人工材料,具有灵活的电磁调控能力。超表面可以实现诸多传统材料难以实现的功能,例如电磁隐身、异常折射等。其中几何相位超表面有相位容差大,宽带响应,设计简单等优点。在几何相位超表面的设计过程中,为了验证其功能,往往需要数值仿真其衍射特性。精确计算亚波长结构衍射光场的方法通常有时域有限差分法、有限积分法以及有限元法等。这些方法的基本思想,都是先将求解区域划分成多个网格,然后基于麦克斯韦方程组计算仿真区域内的衍射光场分布。但当求解区域过大或者衍射距离较远时,为了得到目标平面内的光场分布,此类数值计算方法将耗费大量时间。因此,有必要针对几何相位超表面的衍射光场分布,提出一种快速且不失准确性的仿真方法。在不考虑入射光与结构的相互作用时,矢量衍射理论可以快速计算结构衍射光场分布。而几何相位超表面,其相位调控仅与结构单元的旋转角度有关。所以,本文提出利用矢量衍射理论结合几何相位的方法,来计算几何相位超表面衍射光场特性。基于这种方法,本文进行了如下工作:1.设计了K形和S形亚波长结构,用矢量衍射理论结合几何相位的方法,计算了圆偏光入射时结构的衍射光强分布。同时使用基于有限积分法的电磁仿真软件Computer Simulation Technology(CST)计算了两种结构的衍射光强分布。通过对比可以发现,矢量衍射理论结合几何相位的方法可以得到与CST基本一致的结果,证明了该方法可以用于求解几何相位超表面衍射光强分布。使用CST和矢量衍射理论结合几何相位的方法都可以得到两种结构的衍射光场分布,但是后者计算时间相对前者减少了50到100倍。2.设计了两种悬链线阵列几何相位超表面,一种平面聚焦透镜,一种贝塞尔光束产生器件,并用矢量衍射理论结合几何相位的方法计算了其光场分布。通过该方法可以得到聚焦透镜的焦距在距离器件13.5μm处,CST得到的焦距在13.2μm处;贝塞尔光束产生器在距离器件100~125μm范围内为等光强区域,CST计算得到的等光强区域在95~130μm范围。从结果可以看到,两种方法的误差范围小于10%。