【摘 要】
:
以GnRH不同剂量(振幅高度)和作用持续时间(振幅宽度),及其不同的刺激间隔时间(脉冲频率),连续24h脉冲式刺激体外培养7d的Wistar大鼠原代垂体细胞,观察了LH和FSH的体外应答情况。当振幅相同,LH主要对高频脉冲信号(30min间隔)应答的兴奋性更高一些,而FSH则主要对低频脉冲信号(120min间隔)应答的兴奋性更高一些。在此基础上,对哺乳动物大鼠GnRH刺激的信号转导途径进行了研究。
论文部分内容阅读
以GnRH不同剂量(振幅高度)和作用持续时间(振幅宽度),及其不同的刺激间隔时间(脉冲频率),连续24h脉冲式刺激体外培养7d的Wistar大鼠原代垂体细胞,观察了LH和FSH的体外应答情况。当振幅相同,LH主要对高频脉冲信号(30min间隔)应答的兴奋性更高一些,而FSH则主要对低频脉冲信号(120min间隔)应答的兴奋性更高一些。在此基础上,对哺乳动物大鼠GnRH刺激的信号转导途径进行了研究。结果表明:GTH细胞经过cAMP的激活剂(FSK)或PKC的激活剂(PMA)处理,其LH的分泌都会增高;反之,则降低。而FSH的分泌则主要与PKC的含量变化相关,与cAMP含量变化相关不显著。用荧光定量RT-PCR实验也证明相应的处理后,GTH细胞LHβmRNA和FSHβmRNA表达变化规律与LHβ和FSH分泌变化的规律相同。本研究结果提示: GnRH脉冲频率本身是调节LH和FSH应答的信号之一,在高频脉冲时,主要是LH发生应答,而在低频刺激时,主要是FSH发生应答。另一方面,FSH应答的受体后信号主要是由PKC-Ca2+通道途径转导的,而LH应答的受体后信号则可能主要由cAMP-PKA和PKC-Ca2+通道途径多重转导的。
其他文献
本文基于求解零维多项式系统的有理单变量表示方法做了如下几项工作:改进了Rouillier的选取零维代数簇可分元的算法,改进后的算法使得相应的有理单变量表示中整系数的长度明显缩短;将有理单变量表示方法推广到高维情形,提出了求解高维多项式系统的有理表示方法,从而将方程组的零点集表示为若干个“有理表示集”的并集,对于每个有理表示集,若固定无关变量的值,则相应解的其他坐标分量可表示为有理函数在一个单变量多
随着网络的日益发展,一种新的媒体模式短视频应运而生,充实了人们枯燥的碎片化视频阅看时间。因此在新闻传播中资讯类的短视频"梨视频"也脱颖而出,以最接地气的角度发布即时性新闻视频受到民众关注,紧跟娱乐和时代资讯成功吸引受众的眼球,为梨视频带来了一席竞争之地。随着此类短视频的市场快速开拓,制作者需要更精细的制作及运营模式,和团队的专业性,从而产生了一定的问题。本文将通过对梨视频内容的生产和管理方面浅析来
以CCl4和C6H6为研究对象,利用高压金刚石对顶砧技术结合原位拉曼光谱技术分别研究了它们在0-13GPa高压下的结构转变和费米共振变化,同时比较了CCl4和C6H6二元溶液与纯液体的高压拉曼光谱频移速度变化。实验结果显示,CCl4的v2、v4和v1的频移在13Gpa范围内都正比于压力的增加,但在0.73和7.13Gpa处v2,v4和v1的斜率dω/dP分别出现突变;在3.03Gpa,低频225c
城市文化形象的媒介呈现,直接影响着人们对于城市的价值认同和情感归属,而且关系到城市竞争力的提升和可持续发展。本文以北京城市副中心为研究个案,从城市文化研究的理论视角切入,结合北京城市副中心建设的战略规划、我国文化供给侧结构性改革的基本要义和文旅融合发展形成的新业态,从现实层面提出测量城市文化形象的分析指标:文化政策、文化空间、文化产品、文化服务、文化传承和文化体验。基于Python网络数据采集软件
本文将固浸透镜技术与双光子响应探测器的研究相结合,以近本征Si和半绝缘GaAs为材料,分别制作了半球形Si基(底面为(110)面)和GaAs基(底面为(001)面)双光子响应光电探测器。探测器采用金属—半导体—金属(MSM)结构。分析了入射线偏振光的偏振方向分别为[111]、[110]、[001]晶向时,Si和GaAs晶体的倍频吸收、双光子吸收、场致倍频效应的各向异性,在此基础上,对自行研制的半球
来源于嗜热菌的酶类具有极好的高温反应活性和稳定性,在能源、化工、食品和医药等行业展现出越来越广阔的应用潜力。解析嗜热酶及酶-底物复合物的晶体结构,研究其结构特征,将有助于揭示酶超常生物学稳定性以及高温催化反应机制的分子基础,为发掘嗜热酶的新功能、指导酶分子设计和改造等工作提供必要的理论依据。论文第一部分运用分子生物学技术克隆、表达、纯化了来源于嗜热菌Fervidobacterium nodosum
近年来,非线性边值问题得到了国内外众多学者的广泛关注,在物理、化学、生物和经济等众多学科领域都有广泛的应用.在微分方程解的存在性的研究中,反周期边界条件越来越受到人们的重视.本文讨论了Duffing方程反周期解的存在性问题.第一章是绪论,第二章与第三章是主体部分.在第一章我们回顾了常微分方程的发展历史,并介绍了变分法、拓扑度理论和同伦连续法的产生、发展及其在常微分方程边值问题的存在性方面的应用.在
本文主要研究了解散射问题的优化PML方法.所研究的问题分为有界体散射和无界体散射问题.对这些问题做了理论分析,给出了计算这些问题的优化PML方法,并且通过数值实验验证了求解这些问题的优化PML方法的优越性.本文的具体内容如下:第一章,我们介绍了Helmholtz方程的一些基本概念以及所研究的散射问题的描述;第二章,针对有界体散射问题系统地研究了解此类问题的优化PML方法,给出了算法的收敛性分析,并
本文研究了部分线性模型中的广义似然比检验。我们首先考虑了在一个模型下,零假设分别是非参函数为常数和非参函数为线性函数时的情形,用局部多项式方法估计函数分量,用传统的估计方法估计参数分量,讨论了相应的估计量的渐近性质,估计量在假设nh5 = O(1)成立时都是最优的。在此基础上导出了广义似然比统计量的表达式及渐近正态性质。本文还考虑了两个模型下非参函数的比较,在与一个模型同样的假设下,用相同的方法估