高压下典型In基半导体纳米晶的组装行为和光学性质研究

来源 :吉林大学 | 被引量 : 0次 | 上传用户:liaonianyou
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高压作为重要的非常规极端条件,是新型材料研发的重要手段,它能有效地改变材料的晶体结构,进而影响其内部电子轨道和分布,实现材料结构和性质的调控。压致组装和压致变色材料是典型压力驱动的新型智能材料:(I)通过压力调控粒子间距离,从而调节制备新型超晶格结构的纳米材料;(II)通过压力精确调节原子间距离、晶格间距以及晶胞体积,进而调整半导体纳米材料价带和导带能级,实现发光调制。由于具有优异的压力敏感性,有机物或含有有机成分的化合物是目前压致变色材料研究的主要对象。但是,这类材料对周围环境条件下的温度、水、氧等也很敏感,导致在环境条件下表现出不稳定性。无机半导体纳米材料具有独特的光学特性,如高的荧光量子产率、良好的光化学稳定性、精确可调谐的荧光发射和吸收光谱,引起了人们广泛的研究兴趣。尤其是I-III-VI族Cu In S2量子点和III-V族In P量子点是无Pb、Cd环境友好型半导体纳米材料,其可调谐发射覆盖可见光到近红外区域,并且颜色纯度高。因此,探索这两类材料光学和结构对压力的响应,揭示高压下宏观性质的变化与微观结构之间的内在关系,以期改善材料光学性能,实现发射和吸收光谱的大范围、连续和精确调制提供科学依据,从而为获得高效、稳定的功能性纳米材料提供新思路。具体研究内容如下:(1)我们系统地研究了高压下四方黄铜矿结构Cu In S2纳米粒子组装形貌、光学性质和晶体结构的变化,探索了光学性质和结构之间的联系。在压力驱动下,零维Cu In S2纳米粒子依次组装成一维纳米棒、纳米线和二维纳米片。高分辨透射电镜测试表明,高压下四方黄铜矿结构Cu In S2优先沿<112>方向组装形成纳米棒和纳米线。在16.0 GPa,四方黄铜矿转变为立方岩盐矿结构,(110)高能面横向暴露,从而促进了Cu In S2纳米线横向烧结形成纳米片。原子力显微镜测量表明二维Cu In S2纳米片厚度与初始纳米粒子粒径相当。生成的二维Cu In S2纳米片的光学带隙与初始纳米粒子相比缩小了0.21 e V,更接近于太阳能电池最佳吸收范围。荧光测试显示卸压以后的纳米线与初始纳米粒子基本保持相同的荧光强度,进一步组装成纳米片荧光消失。我们认为,高压诱导纳米粒子组装成一维纳米棒和纳米线过程中引起的晶格畸变等将随着压力的释放而消失,荧光可逆;更高压力下纳米粒子组装形成纳米片,这种减弱的量子限域效应使得激子离域,荧光减弱甚至消失,并且带隙值减小。(2)通过原位高压荧光照片和光谱测试,我们发现2.5 GPa压力以下无机核/壳结构In P/Zn S纳米晶表现出明显的荧光变色现象(橙色→黄色→绿色),这一过程中荧光强度略有增强。完全卸压后,荧光峰位和强度均可恢复,这一现象可重复循环。在2.5 GPa以上,荧光强度开始减弱,进一步压缩到11.3 GPa荧光淬灭,这个过程中压力诱导In P/Zn S纳米晶产生了约400 me V的超宽能量调谐。通过时间分辨荧光光谱研究,我们发现,2.5 GPa以下辐射型跃迁和非辐射型跃迁成分的寿命都在减小,但是辐射型跃迁成分权重增加,这意味着缺陷态的减少;2.5 GPa以上,In P/Zn S纳米晶的辐射型跃迁成分权重大幅度减小,表明压力限制了辐射型激子复合速率。第一性原理计算表明,在低压条件下,In P/Zn S纳米晶的晶格失配率呈下降趋势。因此,压力优化了核/壳应变,减少了界面缺陷态,从而导致In P/Zn S纳米晶的稳定荧光发射。另外,原位高压同步辐射X射线衍射光谱表明,In P/Zn S纳米晶的晶胞体积和晶格间距在低压力下快速收缩,这引起了In P/Zn S纳米晶荧光的快速蓝移。(3)与Zn S和In P之间7.7%的晶格失配率相比,Zn Se和In P之间晶格失配率更小(3.2%),这使得In P/Zn Se具有更优异的光学性质(如窄的发射光谱、高的发光纯度);另一方面,低的晶格失配也促进Zn Se外延生长到In P核上,确保精确调节核壳结构纳米粒子尺寸。厚壳的包覆能够抑制激子的俄歇复合和闪烁行为。结合原位高压测量及表征技术,我们探索了压力下In P/Zn Se纳米晶体的光学性能和组装行为。在5.6 GPa以内,In P/Zn Se纳米晶体的荧光峰位从初始的619 nm(红色)逐渐蓝移至546 nm(绿色),卸压完全可逆,在可见光区域表现出优异的压致变色特性。压力升到14.2 GPa时,我们观察到了带隙调节可达460 me V的超宽范围,卸压后,荧光强度略有降低,带隙值不变。更高压力(21.0 GPa)处理后的样品,其荧光完全消失,带隙值减小。原位高压同步辐射小角X射线散射和透射电子显微镜测试显示,核壳In P/Zn Se纳米粒子在较高的压力下组装形成了纳米片。低压力下纳米粒子保持单分散性,其光学性质在压力释放后完全恢复。继续升高压力使得晶格严重畸变,改变了原有晶体场以及原子之间波函数重叠,增加了缺陷态,使得光生载流子被捕获,荧光减弱甚至淬灭并且不可逆。压力的作用也使得纳米粒子间互相接触并且发生组装,最终在约21.0GPa时烧结形成纳米片,卸压后纳米片形貌被“截获”,带隙值由1.99 e V减少到1.67 e V。
其他文献
镁合金具有低密度、高比强度等优点,在汽车、航空航天和生物等领域受到广泛的关注。但是,由于镁合金为密排六方晶体结构,在加工过程中易形成强基面织构,导致常见的变形镁合金(例如:Mg-6Zn-0.5Zr,ZK60)室温成形性较差。近年来研究发现,在低Zn含量的Mg-Zn-Ca系合金中,Ca元素加入可以形成沿TD方向分裂的弱织构组织,有效提高镁合金的成形性。然而,低Zn含量的Mg-Zn-Ca系合金由于缺乏
Mg-Al-Zn(AZ)系镁合金是应用最广泛的商业镁合金体系之一。与低合金含量AZ系合金相比,高合金含量的AZ80和AZ91等具有更高的强度。然而,高合金含量AZ系合金塑性较低、成型性差,铸态组织中易形成粗大的网状共晶相。此外,高合金含量AZ系镁合金凝固区间较宽,铸造过程中容易形成偏析、缩孔和热裂等铸造缺陷。通过添加合金元素或变质剂均难以完全消除这些不利影响。因此,为避免高合金含量AZ系镁合金的上
地震勘探方法利用地震仪接收人工震源激发的地震波,可以直观的了解地下地质构造,具有勘探深度大、施工效率高的优点,在矿产资源勘探行业中起着举足轻重的作用。随着矿产资源需求的增加和易开采资源的减少,地震勘探方法对勘探装备的要求也越来越高,“深部开采、智能开采、绿色开采”是未来我国矿产资源开采理念的三大发展方向。然而,在地质条件复杂的地区,传统的有缆遥测地震仪器由于大线连接,导致排列布设困难,具有施工成本
通过向铝合金熔体中引入陶瓷颗粒对其凝固组织构型和析出动力学进行调控,可以显著提高铝合金的宏观力学性能。陶瓷颗粒的尺寸、种类以及添加方法是影响铝合金性能的关键因素。近年来,在传统的单一颗粒基础上,研究人员提出了混杂颗粒的概念(双尺度颗粒和双相颗粒),研究表明混杂颗粒作为铝合金调控剂具有超越传统单一颗粒的晶粒细化效率和强韧化效果。另外,亚共晶铝硅合金是铝合金中最常用的一种铸造铝合金,然而传统的孕育颗粒
连山关地区位于华北克拉通北缘铀成矿省辽东铀成矿带,是研究前寒武纪构造演化与成矿作用的重要窗口。已知铀矿床均分布在连山关花岗岩体与辽河群接触带附近,受韧性剪切带控制,前人对连山关地区铀矿成因分歧较大,对剪切带控矿缺少深入、细致的研究,对矿床中的基性岩与铀矿的关系研究处于空白。鉴于此前的成果,本文的研究对象为连山关地区典型铀矿、基性岩和周缘韧性剪切带。采用岩相学、地球化学、锆石U-Pb同位素年代学等研
压电材料是一种非常重要的功能材料,它可以实现机械能与电能的相互转化。基于这一性能,压电材料被广泛应用于热、光、声、电子学等领域。近年来,一些压电材料如h-BN、MOS2、GaN等由于结构稳定、柔韧度高、易于被合成等优点而被广泛关注。相比于这些材料,碳材料具有更低的成本,更好的化学稳定性,更大的表面积和更轻的质量。然而,大部分的碳材料也由于它的结构对称性,以及特殊的物理化学性能而限制了其在压电材料中
随着5G、物联网和人工智能等新技术的快速崛起,智能电子设备朝着两个方向发展:一是芯片和模组的集成度急剧提升,功耗不断攀升;二是零部件的密集程度越来越高,产品变得更轻、更薄。这就导致产品的功耗和散热矛盾更加突出,因此,新型的导热材料已成为产业发展的关注焦点。导热高分子具有耐腐蚀、比强度高、韧性高、耐疲劳、易加工、质轻和成本低等优势,制备导热高分子材料成为一大热点。在某些条件下,导热高分子材料还得具备
有机无机杂化钙钛矿材料作为一种新型光电材料,因其优异的光电性能,在光伏、发光二极管、探测器和激光等领域具有广阔的应用前景。通过降低钙钛矿材料中无机组分的维度,不仅能够有效提高材料的稳定性,还可以丰富晶体结构与电子结构的可调谐性。特别是二维钙钛矿材料,有着优越的稳定性和优良的光物理特性,近年来成为钙钛矿材料领域的研究热点。Ruddlesden-Popper型二维单层钙钛矿晶体材料是二维钙钛矿体系中最
在过去的十几年,金属卤化铅钙钛矿材料因其易加工、高吸收系数、高光致发光量子产率和长的载流子扩散长度等优异的光电性质,被广泛应用于太阳能电池、发光二极管、激光器和光电探测器等众多领域。然而,这类材料长时间暴露在光、湿气和紫外照射下极易发生铅元素的降解,导致其稳定性大大降低。另外,铅元素的毒性已经违背了构建环境友好型社会的宗旨,这也限制了其商业应用。鉴于此,探索一种稳定、无毒的新型非铅卤化钙钛矿材料是
各向异性的银纳米材料因其独特的光学、电学和催化性质而在光学传感、生化分析、疾病诊断和工业催化等领域具有重要的应用价值和广阔的发展前景。近二十年来,各向异性的银纳米粒子,如棒状、线形、多面体、片状等,已经被成功制备。然而,这些粒子通常需要在有机相中合成,存在污染环境、有生物毒性等缺点。而这些粒子的水相合成则由于银离子的高活性,使得粒子的可控调节较为困难。如何有效地调控银前驱体成分和反应活性以适应不同