论文部分内容阅读
在任何实际系统及其外部环境中都存在着随机因素,影响系统的动态行为.实际上,随机模型有时更能准确反映自然与社会工程系统的动态特性.含有非线性、时滞、变系数、Markov跳变、脉冲、分布参数、奇异性、模糊性等复杂因素的随机系统的控制理论是当前的研究热点.本文以非线性、时滞随机系统为研究对象,探讨系统的稳定性、镇定与控制问题.以体现随机系统特色、减小稳定性判据的保守性为追求目标,在非线性与时滞随机系统稳定性分析方法、状态反馈镇定、噪声镇定等方面探索新的方法与途径.主要探索非线性随机系统稳定性的矩方程法、时滞随机系统稳定性分析的Lyapunov函数法加系统方程法,建立具有随机系统特色的Lyapunov稳定性定理、Razumikhin微分不等式比较原理、时滞随机系统的算子型稳定性定理、随机噪声镇定新方法等,并将随机镇定理论用于当前的热门研究领域:忆阻电路的镇定,为非线性与时滞随机系统的稳定性分析、镇定控制这一经典问题带来一些新的视野和理论方法,进一步完善和发展随机系统理论,为工程和社会实践提供理论参考.本论文的主要工作分为以下几个方面:1.介绍了非线性与时滞随机系统的研究背景与意义,以及随机系统稳定性,镇定以及控制等问题的国内外研究现状.并给出了一些常用记号,相关引理,定义以及定理.此外给出了本博士论文数值仿真的基础以及基于泛函微分方程的Lyapunov函数法的方法探索与思考.此部分的引理1.8及其推论、数值仿真算法以及关于Lyapunov函数法的方法探索本身均为本文的相关研究结果.2.分别研究了非线性连续随机时滞系统和离散随机时滞系统的矩稳定性.基于Kronecker代数和一种H-表示技巧,得到了非线性随机时滞系统的二阶矩方程.通过比较原理和已建立的矩方程,得到了非线性随机时滞系统的比较系统.基于比较系统的稳定性性质,建立了原系统的矩稳定定理.最后,用仿真实例说明所得结果的有效性.3.基于Lyapunov函数法研究了It?o随机泛函微分方程的新型稳定性判据.首先,提出了冻结算子以及随机导数的拟负定性概念.基于冻结算子以及广义微分算子,建立基于Lyapunov函数法的It?o随机泛函微分方程的新型稳定性判据,得到的判据在Lyapunov函数的随机导数的负定性方面条件宽松,且结果具有一般性.本章的结论在模型上可以退化到确定型泛函微分方程,在方法上可以推广到多Lyapunov函数法.4.研究了泛函微分不等式.基于我们建立的比较原理,将常用的常微分不等式推广到相应的泛函微分不等式.我们考虑了任意时滞,包括无穷时滞的情况.作为结果,我们将经典的Halanay不等式推广到带有任意时滞的非线性的情形和时变线性的情形.作为应用,我们研究了带有分布时滞的It?o随机变时滞系统的稳定性,基于所得泛函微分不等式,得到了一个稳定性判据.最后用仿真实例说明了我们结果的有效性.5.建立了随机泛函微分方程的一个新型稳定性定理.这个定理的特点是:它不是确定型泛函微分方程基本稳定性定理的直接复制版本.基于这个新型稳定性定理,用最简单的Lyapunov函数以及反复运用方程的方法可以方便地处理时滞项,从而得出方程的稳定性判据.作为应用,根据这个定理,建立了一个基于Lyapunov函数法的实用稳定性定理,同时研究了扩散项带有分布时滞的随机泛函微分系统的渐近稳定性,从而得到了所研究的随机泛函微分系统用代数矩阵方程刻画的稳定性判据.最后用仿真实例说明我们方法和结果的有效性.6.建立了算子型稳定性定理.基于所得到关于广义微分不等式的研究结果,研究了一般形式的时滞随机系统的渐近稳定性.首先提出了构造泛函算子重新改写系统模型的方法.分别针对基于Lyapunov泛函法和Lyapunov函数法的泛函微分算子,建立了两个渐近稳定性定理,它们都具有适用于中立型系统的一般形式,且便于应用.作为应用,研究了带有分布时滞,特别是扩散项带有分布时滞,的时变线性随机系统的镇定问题,研究了控制律的设计方法,同时给出了相应的稳定性判据.最后用仿真实例说明所得结果的有效性.7.明确提出了Razumikhin型泛函微分不等式的概念.基于Razumikhin型泛函微分不等式,建立了Razumikhin型泛函微分不等式的比较原理,从而通过建立的比较原理研究了Razumikhin型泛函微分不等式的定量性质.作为一个直接应用,分别建立了确定系统和随机系统的一些新型Razumikhin型稳定性定理.最后用实例说明了我们方法的用法和有效性.8.研究了随机系统的分时状态反馈控制.首先,提出了系统状态提取矩阵以及分时状态反馈的概念.其次,建立了由线性部分占优的随机系统的稳定性判据.再次,研究了时滞随机系统的分时状态反馈控制,同时设计了分时状态反馈控制定律,建立了闭环系统相应的稳定性判据.最后,面向部分状态信息丢失或者由网络传输带来的传送延迟情形,研究了容错控制.最后用例子说明了该方法的用法和有效性,也表明了分时反馈控制的优点.9.建立了随机系统关于几乎必然稳定性的一类新型稳定性定理,模型包括连续参数系统和不连续参数系统,这类定理实际上属于La Salle型定理.对于连续系统和不连续系统,基于这些稳定性定理我们进一步研究了利用噪声的随机镇定和随机消稳问题.在此部分,过去文献中常用的局部Lipschitz条件被减弱为广义局部Lipschitz条件,其系数可以时变.文献中的线性增长条件或者单边线性增长条件也被减弱为广义单边线性增长条件,其特点是局部、变系数、非线性,在时间维上真正允许系数的时变性,在空间维上真正允许系数的非线性性.作为新型稳定性定理的应用,1.我们提出了一个寻找噪声强度?g(t;x)的简单、直接的设计方法,使设计的噪声?g(t;x)d?B(t)可以镇定一个不稳定的系统或者消除一个稳定系统的稳定性,不管是确定型的还是随机型的系统.这样的设计方法适用于真正的时变和非线性系统;2.针对基于忆阻的电路这一背景,研究不连续系统的随机镇定与消稳.我们阐述了广义It?o公式、具有不连续漂移项的随机系统的Filippov解的非零性与整体存在性;对具有不连续动力学特性的确定性系统,具有不连续漂移项的随机系统,应用与连续型系统同样的方法设计镇定噪声强度,研究了基于忆阻的电路的随机镇定方法,该方法设计的控制器具有全局性,对系统参数与切换没有限制条件.最后,给出几个仿真实例说明了提出的理论与设计方法的有效性.本文的特点是:瞄准了本方向的研究难点:由系统的随机性、非线性、时滞性、时变性带来的困难,以减少判据保守性为目标,力图通过细心的观察、方法的整合与突破,对过去难以拓展的模型、难以放宽的假设与难以深入的问题开展新一轮探索,攻坚克难,力图对一些经典的难点问题取得一些具有意义的进展.作者认为,本文提出的方法、取得的结果都是初步的,但通过文中的探索,我们得到了一个启示,那就是:如果我们不问青红皂白,一味躲避困难,可能错过美好风景.因此,作者将在今后继续推进本文研究,力争新的成果.为此,我们将在文末的“展望”部分提炼进一步的研究课题,作为今后努力的方向.