【摘 要】
:
随着计算共形几何的快速发展,得益于其对复杂曲面变形分析的处理能力,这给了我们将它运用到软体机器人曲面变形分析领域的灵感。针对软体机器人曲面变形的几何形状的非线性,进而导致在其变形过程中无法准确的对其进行度量,以及准确的描述,于是以计算共形几何为基础,引入Ricci流理论和计算曲面共形模的方法,将曲面形态变化问题转为曲面黎曼度量变化问题,进而建立数学模型对软体机器人的曲面变形进行定量描述。首先根据曲
论文部分内容阅读
随着计算共形几何的快速发展,得益于其对复杂曲面变形分析的处理能力,这给了我们将它运用到软体机器人曲面变形分析领域的灵感。针对软体机器人曲面变形的几何形状的非线性,进而导致在其变形过程中无法准确的对其进行度量,以及准确的描述,于是以计算共形几何为基础,引入Ricci流理论和计算曲面共形模的方法,将曲面形态变化问题转为曲面黎曼度量变化问题,进而建立数学模型对软体机器人的曲面变形进行定量描述。首先根据曲面几何微分学,研究软体机器人曲面信息的数学描述方法。将软体机器人曲面变形过程从三维欧式几何变形,通过内蕴思想,转变为不断改变曲面自身黎曼度量的过程。引入曲面的共形变形,离散曲面Ricci流、Delaunay三角剖分的变换、Gauss-Bonnet定理、Yamabe方程、微分余弦定理、Poincare-Hopf定理,建立了离散Ricci曲率流的数学模型和算法,并且验证了离散Ricci曲率流方程对软体机器人曲面变形是指数级收敛的。然后讨论了计算共形几何的基础理论,并尝试建立基于离散Ricci曲率流的曲面共形参数化数学模型。根据离散熵能量、共形因子、离散Gauss-Bonnet定理、Circle Packing最大圆盘填充实现了基于离散Ricci曲率流的Matlab程序的调试。研究了软体机器人三维扫描提取三维模型和三角网格处理方法。采集不同材料,不同工作压强下的软体机器人变形曲面三维模型。最后实验验证了一套较为完整的软体机器人设计制备流程。详细介绍了曲面变形软体机器人的驱动原理、结构设计、模具设计、制作过程和实验平台的搭建,分析了软体机器人的变形规律,并且获取了实验过程左右气路驱动软体机器人移动的驱动值,即工作压强值。曲面变形软体机器人工作时刻的表面点云信息。根据针对软体机器人的某一变形时刻,通过测压法获得了气压、伸长量,阐述材料和压强对伸长量的影响。柔韧性越好的材料、工作压强越大软体机器人伸长量越大,进而推测共形模的影响因素。
其他文献
近年来,随着钱币市场不断升温,越来越多的人开始关注收藏币。采用传统人工方式对收藏币进行分拣和识别,人工和设备成本较高,并且长时间不断重复容易造成身体和视觉上的疲劳,影响身心健康。本文开发了一套收藏币包装盒拍照机器人控制系统,可实现对收藏币包装盒夹取、升降、定位、翻转和图像采集等一系列全自动拍照工艺流程。构建了“PC+工业相机+嵌入式控制器”的控制系统总体架构。PC端作为上位机负责的人机交互、数据通
大数据分析、处理技术是计算机领域热点研究问题之一。然而,大数据往往伴随具体业务信息和商业机密,科研人员很难获得有效的大数据。因此,如何根据有限的真实数据生成仿真大数据的技术成为学术界需要研究和解决的问题。具体体现在:构建大数据分析的机器学习模型时需要大量的训练数据,大数据处理系统需要大量的测试用例集等等。针对上述技术需求,本文讨论两种大数据集生成算法和应用技术,包括:离散和级联大数据生成算法和北京
众所周知,风是一种非常常见的自然现象,风速风向也是非常重要的气象参数。风速风向的测量对于航海、航空、科学研究、风力发电以及工农业生产都具有重要意义。传统的机械式测风仪器难以满足众多领域对于风速风向的高精度测量要求,微电子技术的飞速发展和软件算法的改进使得时间测量精度和计算机的处理能力得到大幅提高,出现了超声波测风仪等高精度的测风设备,与传统的测风设备相比无机械磨损、精度高、能适应更加复杂的工作环境
辊弯成形是一种将金属板料连续地通过轧机,横向弯曲成所需要横截面形状的塑性加工技术,具有成形精度高、能大批量连续生产等优点。微成形工艺是生产至少两个方向处于亚毫米范围零件的塑性制造工艺。微型构件市场需求的显著增加,极大地推动了微成形技术的发展。为了实现对具有微小截面特征的细长金属零件的高效率连续生产,研究者们提出了微辊弯成形工艺。目前对传统辊弯成形的研究已经比较深入,但对刚起步的微辊弯成形中材料的复
水资源的回收再利用能够有效解决水资源短缺的问题,水资源再利用包括很多复杂工序,其中利用沉淀效应去除水中杂质是必不可少的一环。但这也会造成沉淀池中淤泥的堆积,为保证水资源再利用的持续进行需对沉淀池中的淤泥进行定期清理,因此需要有一种设备能够实时监测沉淀池中淤泥的高度。针对上述问题,本课题设计了一种投入式超声波泥位测量系统以实现沉淀池泥水界面的检测工作。为适应工业生产现场的复杂环境,该系统应具有较高的
云计算的高虚拟化、高扩展性和廉价性等优势,使得个人和企业愿意把本地数据的存储和计算外包给云端服务器。然而,数据的隐私性和完整性问题严重影响着云存储技术的应用推广。出于安全性考虑,数据在外包到云服务器之前通常需要进行加密。然而,加密却破坏了数据文件之间的关联性,给用户的文件搜索管理带来巨大挑战。可搜索加密技术的出现使得用户能够对密文实现关键词的搜索。现有可搜索加密方案通常假设云服务器是诚实且好奇的,
推荐系统作为电子商务平台的重要组成部分之一,能够有效地捕获用户的兴趣特征,实现个性化推荐任务。作为推荐系统的重要分支,序列型推荐系统能够进一步捕获用户兴趣特征的动态变化,实现实时推荐任务。尽管经典的序列型推荐方法能够较好的为用户提供推荐服务,但是本文认为这些方法依旧存在一些缺陷。一方面,这些方法在对用户兴趣建模时往往难以捕获用户行为序列项目间的复杂转换关系以及用户对于不同项目的不同关注程度;另一方
新词指的是在词典中不曾存在,但现在被人们广泛使用的词语。随着互联网的飞速发展,大量新词也随之涌现。这些新词的出现给诸多自然语言处理任务带来了挑战,因此新词发现是存在一定价值与意义的。传统新词发现方法通过总结新词模板与统计特征提取新词,但其只能针对于特定的领域进行新词发现,或是只能提取长度较短的新词语。针对以上问题,本文提出了一种将深度学习和新词发现相结合的方法,在BiLSTM+CRF模型上融合了多
区块链是密码学、分布式最终共识机制、P2P传输等不同技术的交叉融合,以其去中心化的特征,创造了一个不可篡改的链状可信环境,受到了当前金融、法律、物联网等不同行业的广泛关注。区块链技术已经成为当下研究的热点话题,而如何在项目实际应用中提升区块链的安全性和效率则是目前亟需解决的难题。针对以上问题,本文将区块链底层架构中不同层级作为研究对象,对其中共识机制和智能合约中关键点进行全面分析;并结合冗余机制和
增强现实是以三维注册、虚实融合与人机交互为基础,实现虚拟物体和真实场景相互融合的技术。增强现实任务的核心问题是对现实场景中的物体进行准确、快速地识别和跟踪,以便将虚拟物体准确地放置在相应的位置上。本文针对增强现实中的三维注册技术进行研究,主要采用基于深度学习的方法对目标检测和位姿估计算法进行了研究与改进,提出了一个鲁棒性强且能满足实时需求的物体识别系统,本文主要贡献如下:(1)针对传统目标检测模型