论文部分内容阅读
飞控系统是保障飞行器稳定可靠飞行的关键,在新型飞行器首次试飞前,应在地面上通过各种仿真与试验手段测试与评估其飞控系统。由于半实物仿真评估飞控系统必须建立大量的模型而完全真实的飞行试验评估飞控系统风险高、成本高、周期长,本文提出了一种介于半实物仿真和飞行试验的飞控系统试验技术,以在地面上更加真实地评估飞控系统,进一步增强飞控系统可靠性,降低新型飞行器试飞风险、飞行器研制成本和周期。本文对该试验技术进行了初步研究,包括试验技术的总体研究、试验系统方案研究、试验与评估方法研究、试验技术的试验验证。
首先,具体介绍了飞控系统的数学仿真与半实物仿真,指出了它们所采用的数学模型和物理等效模型,详细分析了这些模型与真实状态的差距。提出了基于风洞的飞控系统全实物试验技术,指出了该试验技术的基本思想、基本特点与目的。分析了该试验技术相比半实物仿真与飞行试验的差异,指出了该试验技术的优势与局限性。提出了该试验技术能真实评估的飞控系统性能,包括飞控系统舵操纵性能、姿态操纵性能、舵稳定性边界、姿态稳定性边界与姿态扰动边界,分析了该试验技术相比半实物仿真、飞行试验的评估能力差异。进一步,指出了未来飞控系统试验与评估流程,分析了该试验技术要求。
其次,提出了三个阶段的基于风洞的飞控系统全实物试验系统方案,明确了各阶段试验系统方案的组成与功能。比较分析了各阶段试验系统方案与半实物仿真系统的差异,详细说明了各系统方案相比半实物仿真系统的优势与系统评估能力的优势。提出了基于风洞的飞控系统全实物试验系统的关键技术,包括风洞与飞行器试验件技术、试验件支撑技术、测量技术、实时数据采集与控制技术,列出了各项关键技术的要求,并对试验件支撑技术进行了着重分析,量化分析了支撑装置气动干扰对飞行器姿态响应的影响,给出了一种补偿气动干扰影响的方法。
再次,提出了基于风洞的飞控系统全实物试验与评估方法,包括基于风洞的飞控系统全实物试验方法、基于风洞的飞控系统全实物试验性能评估方法。试验方法中明确了评估舵操纵性能、姿态操纵性能、姿态稳定性边界与姿态扰动边界的试验类型、试验原理、试验输入形式与试验操作流程。性能评估方法包括性能指标计算方法与性能评定方法,性能指标计算方法中明确了如何利用原始试验数据计算得到舵操纵性能指标、姿态操纵性能指标,性能评定方法中给出了通过基本指标区间限定与指标等级划分来评定控制系统性能优异程度的方法。以某高超声速飞行器俯仰控制系统为例,对上述试验与评估方法进行了数学仿真演示,给出了俯仰舵操纵性能、俯仰姿态操纵性能、攻角稳定性边界与姿态扰动边界的评估结果,初步验证了该试验与评估方法的可行性。
然后,提出了基于风洞的飞控系统全实物试验技术的初步试验验证方案,并在该验证方案中,提出了基于风洞的飞控系统全实物试验与半实物仿真舵响应、姿态响应的量化比较准则。根据基于风洞的飞控系统全实物试验技术的初步试验验证方案,构建了基于静态高超声速风洞的飞控系统全实物试验系统,开展了基于风洞的飞控系统全实物试验,评定了飞控系统舵操纵性能,初步验证了本文提出的基于风洞的飞控系统全实物试验系统方案、基于风洞的飞控系统全实物试验与评估方法的可行性,初步验证了本文提出的试验技术评估飞控系统性能的可行性。
最后,开展了飞控系统半实物仿真试验与飞行试验,根据基于风洞的飞控系统全实物试验与半实物仿真舵响应、姿态响应的量化比较准则,综合比较了基于风洞的飞控系统全实物试验、半实物仿真与飞行试验的舵响应与姿态响应结果,量化验证了基于风洞的飞控系统全实物试验相比半实物仿真的舵面负载更加真实、气动力更加真实、姿态响应更加真实的特点,量化验证了基于风洞的飞控系统全实物试验能获得比半实物仿真更加真实的飞控系统性能评估结果,初步验证了本文提出的试验技术评估飞控系统的优势。
论文针对基于风洞的飞控系统全实物试验技术进行了初步研究,明确了这种试验技术是什么、为什么提出这种试验技术、该试验技术能评估哪些飞控系统性能、该试验技术需要构建一种怎样的试验系统、该试验技术如何测试与评估飞控系统性能,并通过仿真与试验初步验证了该试验技术的可行性。通过本文研究,为飞控系统评估提供了一种更加真实的地面试验技术途径。
首先,具体介绍了飞控系统的数学仿真与半实物仿真,指出了它们所采用的数学模型和物理等效模型,详细分析了这些模型与真实状态的差距。提出了基于风洞的飞控系统全实物试验技术,指出了该试验技术的基本思想、基本特点与目的。分析了该试验技术相比半实物仿真与飞行试验的差异,指出了该试验技术的优势与局限性。提出了该试验技术能真实评估的飞控系统性能,包括飞控系统舵操纵性能、姿态操纵性能、舵稳定性边界、姿态稳定性边界与姿态扰动边界,分析了该试验技术相比半实物仿真、飞行试验的评估能力差异。进一步,指出了未来飞控系统试验与评估流程,分析了该试验技术要求。
其次,提出了三个阶段的基于风洞的飞控系统全实物试验系统方案,明确了各阶段试验系统方案的组成与功能。比较分析了各阶段试验系统方案与半实物仿真系统的差异,详细说明了各系统方案相比半实物仿真系统的优势与系统评估能力的优势。提出了基于风洞的飞控系统全实物试验系统的关键技术,包括风洞与飞行器试验件技术、试验件支撑技术、测量技术、实时数据采集与控制技术,列出了各项关键技术的要求,并对试验件支撑技术进行了着重分析,量化分析了支撑装置气动干扰对飞行器姿态响应的影响,给出了一种补偿气动干扰影响的方法。
再次,提出了基于风洞的飞控系统全实物试验与评估方法,包括基于风洞的飞控系统全实物试验方法、基于风洞的飞控系统全实物试验性能评估方法。试验方法中明确了评估舵操纵性能、姿态操纵性能、姿态稳定性边界与姿态扰动边界的试验类型、试验原理、试验输入形式与试验操作流程。性能评估方法包括性能指标计算方法与性能评定方法,性能指标计算方法中明确了如何利用原始试验数据计算得到舵操纵性能指标、姿态操纵性能指标,性能评定方法中给出了通过基本指标区间限定与指标等级划分来评定控制系统性能优异程度的方法。以某高超声速飞行器俯仰控制系统为例,对上述试验与评估方法进行了数学仿真演示,给出了俯仰舵操纵性能、俯仰姿态操纵性能、攻角稳定性边界与姿态扰动边界的评估结果,初步验证了该试验与评估方法的可行性。
然后,提出了基于风洞的飞控系统全实物试验技术的初步试验验证方案,并在该验证方案中,提出了基于风洞的飞控系统全实物试验与半实物仿真舵响应、姿态响应的量化比较准则。根据基于风洞的飞控系统全实物试验技术的初步试验验证方案,构建了基于静态高超声速风洞的飞控系统全实物试验系统,开展了基于风洞的飞控系统全实物试验,评定了飞控系统舵操纵性能,初步验证了本文提出的基于风洞的飞控系统全实物试验系统方案、基于风洞的飞控系统全实物试验与评估方法的可行性,初步验证了本文提出的试验技术评估飞控系统性能的可行性。
最后,开展了飞控系统半实物仿真试验与飞行试验,根据基于风洞的飞控系统全实物试验与半实物仿真舵响应、姿态响应的量化比较准则,综合比较了基于风洞的飞控系统全实物试验、半实物仿真与飞行试验的舵响应与姿态响应结果,量化验证了基于风洞的飞控系统全实物试验相比半实物仿真的舵面负载更加真实、气动力更加真实、姿态响应更加真实的特点,量化验证了基于风洞的飞控系统全实物试验能获得比半实物仿真更加真实的飞控系统性能评估结果,初步验证了本文提出的试验技术评估飞控系统的优势。
论文针对基于风洞的飞控系统全实物试验技术进行了初步研究,明确了这种试验技术是什么、为什么提出这种试验技术、该试验技术能评估哪些飞控系统性能、该试验技术需要构建一种怎样的试验系统、该试验技术如何测试与评估飞控系统性能,并通过仿真与试验初步验证了该试验技术的可行性。通过本文研究,为飞控系统评估提供了一种更加真实的地面试验技术途径。