采油用直驱型混合励磁磁通切换电机设计与分析

来源 :中国石油大学(华东) | 被引量 : 0次 | 上传用户:bosswhy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
尽管可再生清洁能源是解决能源危机和环境问题的有效途径,但石油目前仍然是支撑现代社会发展的重要能源,而抽油机是石油开采系统中的重要设备。针对现有抽油机用驱动电机转矩需求范围大、效率低和传动结构复杂的问题,本文在具备低速大转矩直驱能力和高效率等优点的磁通切换(Flux-Switching Permanent Magnet,FSPM)电机的基础上,采用混合励磁方案满足抽油机的大范围转矩需求,从而提出一种新型的轴向分段式定子混合励磁磁通切换(Axial Partitioned Stator Hybrid-Excitation Flux-Switching,APS-HEFS)电机。本文围绕以下内容对该新型电机展开研究:1.基于经典的12/10极FSPM电机,采用轴向分段式定子结构,将电励磁绕组和电枢绕组分别放置于不同定子上,提出一种新型的轴向分段式定子混合励磁磁通切换电机,并对电机的磁路结构及调磁机理进行分析。2.为了得到该电机的最佳性能,借助有限元分析方法,从定子和转子的结构和尺寸参数两个方面研究电机结构和尺寸参数对电机性能的影响,以得到该电机的最佳设计参数。3.借助三维有限元分析,对所提电机的静态特性进行分析计算,主要包括磁场分布、空载磁链、空载气隙磁密、空载感应电动势、定位力矩和电磁转矩等,并将所提电机与现有的混合励磁磁通切换电机进行对比研究,分析所提电机结构的优势与不足。4.结合国内外对电机损耗尤其是铁耗的研究分析,针对所提电机结构,建立该电机铁心磁密和铁心损耗的理论计算模型,并借助有限元方法分别对磁密计算结果和损耗计算结果进行验证。
其他文献
基于多肽在诸多生物过程及其体内和体外形成的超分子纳米结构及其相应的功能,国内外科研工作者针对多肽自组装做了大量的研究工作。多肽是由氨基酸残基按照一定的序列通过肽键连接而成的。形成多肽组装体的作用力主要为多肽主链之间的氢键作用以及侧链间的疏水、π-π堆积和静电作用等。组成多肽分子的氨基酸残基的分子结构和性质决定了其自组装过程和形成的超分子结构,所以通过有目的性的分子设计可以调控多肽组装体的形貌。目前
液膜密封因突出的工作性能(极低的泄漏率、良好的润滑性、稳定性、自我调节能力等)及较长的使用寿命在石油化工、航天航空、船舶汽车等行业拥有广阔发展前景,但受不断变化的工作环境及工况限制,目前仍存在高速稳定性差、介质易相变、低速开启特性不足、磨损严重等问题,为缓解现存问题,多种端面结构已被开发,但使用效果差强人意。鉴于此,本文基于仿生设计方法提出一种仿蝙蝠翼翅型液膜密封槽型结构,并利用试验研究与数值模拟
碳四资源的深度利用是石油化工领域的重要研究课题。近年来异丁烷脱氢以及烷基化发展迅速,异丁烷成为新兴的热门产品,而正丁烷尚无合理的利用途径。正丁烷异构化制异丁烷技术,将为解决正丁烷过剩和异丁烷需求量增加的问题提供一条合理的技术路线。因此,本文针对金属氧化物催化剂和分子筛催化剂在正丁烷异构化反应中的应用展开研究。本文研究了硫酸化氧化锆催化剂SO42-/Zr O2-Al2O3(SZA)上正丁烷异构化的反
航空发动机回热器作为一种新型换热装备在提高能源效利用率和降低环境压力方面具有重要意义。回热器中存在大量钎焊接头,工作过程中,蠕变断裂是其主要失效方式之一。因此,准确预测钎焊接头的蠕变裂纹扩展行为对回热器的安全设计及寿命评定具有重要意义。本文以回热器中Inconel625/BNi-2钎焊接头为研究对象,探究了钎焊接头各微区及整体的力学性能及蠕变性能,构建了用以预测钎焊接头蠕变裂纹扩展行为的蠕变损伤演
壬酸和壬二酸是生产酯类润滑油产品的重要原料,在工业润滑领域具有重要应用。由于国内产量不足,传统的臭氧氧化和硝酸氧化法,不仅生产效率低且对环境会造成很大污染。另外其生产过程对设备要求严格,成本较高,因此需要发展一条绿色的化工生产路线。双氧水是一种清洁的氧化剂,产物仅仅为水,利用双氧水氧化过程符合环保理念。本文以工业级油酸为原料,设计研究合适催化剂,利用乳液催化技术来制备低碳酸。首先,考察了不同碳链表
气液分离是指从气液两相流中分离出雾滴或小液滴进而排出洁净气相的过程,广泛存在于过程工业中,例如湿天然气脱水工艺、湿法烟气脱硫系统烟气除雾工艺。管束式气液分离器作为进行气液分离的有效离心分离设备,其主要由管束和旋流导叶组成。本文以管束式气液分离器为研究对象,基于“液滴粒径分级分离思想”,创新性地提出了具有结构参数梯度的两级串联旋流导叶形式。以实验研究与数值模拟相结合的方法对其流场分布、分离过程机制、
焊接残余应力是影响各领域机械装备大型化、高参数化、复杂恶劣条件下长周期运行服役时可靠性与安全性的重要因素,是导致焊接结构疲劳断裂、脆性失效以及各种焊接裂纹形成的主要原因。本文基于焊接残余应力和变形调控理论源头创新,研制了一种旨在免除焊后去应力处理的埋弧焊丝,并应用于EH40高强度船用钢厚板焊接。针对传统数值计算模型在预测多因素耦合条件下焊接接头复杂热物理/冶金物理行为方面的局限性,基于有限元分析软
杯芳烃作为第三代超分子大环主体化合物,具有独特的空腔结构,可实现对客体分子的包合与高效识别。为进一步改进杯芳烃类化合物的应用性能,本文首次设计、合成了新型手性杯芳烃低聚物,以其为手性诱导剂诱导合成了手性金属纳米粒子,并研究了对核苷类化合物的手性识别作用,具有重要理论与实际意义。在合成对叔丁基杯[4]芳烃(CA[4])、对叔丁基杯[6]芳烃(CA[6])和对叔丁基杯[8]芳烃(CA[8])的基础上,
随着化工行业的承压设备向高温、高压、高速等高参数的方向发展,蠕变—疲劳逐渐成为致使此类设备失效的重要因素。设备在焊接制造过程中不可避免会产生残余应力,研究焊接接头的蠕变—疲劳行为可以为其在复杂载荷下的使用提供重要的理论依据。本文以316L不锈钢为研究对象,以蠕变—疲劳本构、损伤演化及焊接残余应力计算为基础,对焊接接头残余应力在蠕变—疲劳下的力学演化行为及寿命进行了研究,分析了保载时间、疲劳幅值和载
随着清洁油品质量指标的不断升级、柴油市场需求量的不断减少和轻质芳烃市场的持续增长,富含多环芳烃的催化裂化柴油的有效转化成为炼化企业挖潜增效的有效途径。目前,已工业应用的技术有加氢裂化技术和加氢处理-催化裂化组合工艺,其中将稠环芳烃选择性加氢饱和为单芳环环烷烃是技术的关键。本论文以蒽为模型化合物,深入认识了稠环芳烃的选择性加氢反应机理,并通过优化助剂P含量和焙烧温度,提高了Ni Mo/Al2O3催化