双机械模光力系统中机械振子的基态冷却与压缩

来源 :延边大学 | 被引量 : 0次 | 上传用户:ebugdoor
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,腔光力学作为研究辐射场与机械振动相互作用的学科,成为研究宏观系统量子行为和量子信息处理的大有前景的研究领域,被广泛用于宏观尺度上量子现象的研究,例如机械振子的基态冷却、宏观纠缠、阻塞效应、机械模压缩、超高精度测量以及量子一经典力学边界等。然而,由于不可避免的环境热噪声影响,这些量子效应的实现可能会被破坏。为了克服热噪声的影响,机械振子需要提前冷却到基态。另一方面,腔光力系统中压缩态的研究为高灵敏度位移探测、生物学测量和引力波探测等方面的应用提供了新的方法和途径。众所周知,在腔光力系统中,光学腔的高品质因数与机械振子的高频率以及较强的光力耦合是相互矛盾的,因此,如何在低品质因数的腔光力系统中实现量子信息处理任务是亟待解决的问题。本文在不可分辨边带极限下(k>>ωm)研究腔光力系统中宏观机械振子的基态冷却及压缩效应。具体研究内容如下:首先,提出了一种利用周期性频率调制抑制Stokes加热过程,进而改善耦合机械振子冷却的理论方案。通过协方差分析和数值模拟的方法,证明了即使在不可分辨边带机制下,耦合机械振子也能在稳定区和不稳定区实现高效率的冷却。并且通过适当调节系统参数,可以操控两个机械振子的冷却效率。其次,我们提出了在嵌入原子系综的腔光力系统中利用周期振幅调制实现对称结构机械振子的正交压缩态的方案。通过协方差分析和数值模拟,结果表明,与不含原子系综的腔光力系统相比,原子系综的引入极大地降低了机械振子的涨落,在周期振幅驱动下能够使两个机械振子同时产生正交分量压缩。该方案可以被推广到多个机械振子的压缩情况。
其他文献
超声蒸发器是运用超声波技术辅助物料蒸发浓缩的一种新型蒸发设备,它尤其适用于易结垢、易发泡及高沸点物料的浓缩。由于超声波技术强化含盐污水蒸发传热的机理性研究不足及
即将到来的2020年东京奥运会,将会成为各国展现跆拳道竞技水平的最高舞台。跆拳道项目将作为中国在2020年东京奥运会夺金的热门,也曾在悉尼奥运会、雅典奥运会、北京奥运会、伦敦奥运会、里约奥运会夺得女子各优势级别的金牌,有着深厚的夺金经验,更可喜的是在里约奥运会中夺得男子58公斤级别的金牌,实现了男子跆拳道奥运会金牌零突破。随着时间的推移,各国优秀跆拳道选手已做好了充足的准备,在备战奥运会的期间,也
缩氨基硫脲类化合物由于具有良好的生物活性,已引起人们的关注。其过渡金属配合物的活性要远远高于配体,尤其是在抗肿瘤活性方面。在本文中,对2-噻吩甲醛和异丙基-2-吡啶酮与
在当今大数据时代和云存储系统的发展中,分布式存储技术起着至关重要的作用.在存储系统中存储数据时,为了提高云存储的数据可靠性,系统会额外存储大量的冗余数据.冗余有两种常见形式:复制和纠删码.复制是最简单的冗余形式,即在多个节点上存储相同的信息;而纠删码是将原始文件等分成多个信息块,这些信息块再编码生成同样大小的若干个校验块,使得从所有信息块和校验块中任意下载原始文件大小的信息就可以重建出原始文件.与
定位器作为气动执行器组成之一,是保持生产稳定运行的重要设备。本文以定位器作为气动领域电子产品的典型对象,开展故障预测研究。定位器与调节阀一起安装在工业生产现场,由于常常在高温、高压、易堵、强腐蚀、易漏或频繁的机械运动等恶劣环境下工作,定位器会出现各种异常或故障。定位器一旦出现问题,会使控制回路中产生振荡,进而导致设备加速损耗、降低产品质量、浪费能源和污染环境等问题。目前定位器的维修主要采用事后维修
渐进成形技术因其灵活的加工性以及较低的成本在塑性成形领域占据优势,但成形件的表面质量始终是制约渐进成形工业化的关键因素。同时,随着超声辅助成形技术的进一步发展,超声振动对于表面质量及成形性能提高的独特优势在多种加工工艺上已得到验证。基于此,本文针对铝合金薄板开展了超声辅助渐进成形表面质量及表面材料流动特性探究。首先,本章利用三维表面高度参数与功能参数指标对渐进成形表面形貌进行表征,分析了工艺参数以
人体在食用含油脂的食物时,食物中的油脂会破碎进入唾液中并与其发生聚集和絮凝现象,唾液中的蛋白等活性成分会吸附在油脂颗粒的表面,形成稳定的乳化液。红烧肉作为一种目前最适合用于肉类食品口腔加工研究的模型载体,同时具有瘦肉和肥肉,富含脂肪。本文首先以三种不同工艺生产的红烧肉为研究对象,监测其在加工过程中脂肪的变化规律,筛选适合后续研究的红烧肉模型载体;收集咀嚼后的食团,获得一种能稳定得到无食物残渣残留、
在透明柔性电子设备快速发展的同时,人们对其电极的高透明性、柔软性和多功能性也提出了更高的要求。在众多新型光电器件的研发过程中,人们常通过开发电极材料和设计材料微观结构来实现其优良的物理特性及器件性能的提升。本论文基于聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)和银纳米线(Ag NWs)的复合导电油墨构筑了可应用于不同光电器件的透明电极,并对其性能及应用展开了系列研究,研究内
量子力学中表示可观测力学量的算符是厄米算符,这是因为厄米算符有着实的本征值。然而研究者们发现在非厄米宇称—时间对称系统中,非厄米算符也可以拥有完全实的本征值。由于这一特性,异常点的存在备受关注。我们对异常点的存在进行进一步学习,发现它在经典光学系统中展示了许多有趣的物理现象,例如光学滤波器、相干完美吸收、单向无反射、电磁诱导透明等。不仅如此,在厄米和非厄米的量子系统中,异常点的存在也引起了人们的关
随着材料轻量化技术在航空航天及汽车产业中的逐步应用,碳纤维增强复合材料(CFRP)凭借其轻质高强的综合性能得到了广泛关注。CFRP构件在与其他构件装配使用时,为满足配合精度要求,大多需要进行后续的铣削、钻削等机械加工操作以制成相应的键槽、通孔等特征型面。然而,CFRP是一种典型的难加工材料,具有硬度较大、各向异性、非均质性等特点。在CFRP传统加工时,容易产生毛刺、分层、刀具快速磨损等加工缺陷,极