基于变密度法的宏细观多尺度并行拓扑优化设计方法研究

来源 :西安理工大学 | 被引量 : 0次 | 上传用户:dxwlzjzxa
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
拓扑优化是以力学、数学为核心,以优化理论为基础的一门学科,通过寻找给定设计域内材料最优分布,实现结构性能最大化目的,被广泛应用于航空航天、汽车工业、生物医疗等领域。传统拓扑优化主要针对结构的宏观尺度进行设计,随着现代工业产品对结构性能要求的日益提升,单尺度结构优化已无法满足这样的需求。微结构由于具有质量轻、比刚度和比强度大、隔振和隔热效果好等优点,越来越受到广大研究人员的喜爱,考虑细观微结构的多尺度拓扑优化更能充分发挥结构的性能。在多尺度拓扑优化中,为使迭代稳定收敛,宏观优化与细观微结构优化是分开进行的,微结构构型的变化没有对宏观材料分布产生影响。为进一步改善结构性能,本文建立了基于变密度法的宏细观多尺度并行拓扑优化设计模型同步优化宏观结构及细观微结构,基于该模型研究了力载荷结构、热载荷结构的单目标优化,热力载荷共同作用结构的多目标优化。首先,建立了多尺度并行拓扑优化模型与非并行拓扑优化模型,对比分析了并行优化与非并行优化结果,验证了本文所提并行优化方法能较大幅度提升结构性能。针对多尺度优化设计变量大的问题,分别采用均匀划分方法与聚类划分方法对宏观结构设计域进行划分,分析比较了不同划分方法的优化结果,发现聚类划分方法更加有效,大大减少了计算时间成本的同时提升了计算效率。设计了聚类方法改进模型,防止优化后期聚类边界值的跳动现象,提高优化的收敛速度。其次,对力载荷结构进行了多尺度并行拓扑优化设计,建立了采用聚类方法的力载荷结构多尺度并行拓扑优化设计模型。该模型考虑微结构对整体宏观结构性能的影响,针对宏观优化的结果,将每次获得的微结构填充到宏观结构中,重新评价宏观结构的性能,指导下一步的宏观优化,得到微结构的体积及宏观位置分布;然后再进行微结构的拓扑优化设计;再把获得的最优微结构填充到宏观结构中,评价宏观结构的性能,依次循环,直到获得最佳微结构构型及位置分布,从而也获得最优性能的宏观结构。以悬臂梁结构、MBB梁结构和Michell结构为优化对象,通过对宏细观多尺度并行优化结果的分析,进一步验证了所提方法的正确性与有效性。接着,对热载荷结构进行了多尺度并行拓扑优化设计,建立了采用聚类方法的热载荷结构多尺度并行拓扑优化设计模型。采用该模型对稳态热传导条件下四边界恒温结构、四顶点恒温结构、中心恒温结构的散热性能进行优化设计,从优化结果可以看出建立的多尺度并行拓扑优化模型具有通用性。最后,对热力载荷共同作用的结构进行了多尺度多目标并行拓扑优化设计,分析不同权重系数下的结构力学性能与热学性能,可以清晰的看出多目标优化极大的提高了结构的综合性能。
其他文献
渭河是黄河的第一大支流,担负着运输、供水、发电、调节气候等功能,在促进沿河经济发展和促进大自然水循环中具有重要的地位。秦岭为我国暖温带和亚热带的分界线,发育了众多溪流,孕育了丰富的动植物资源,是全球生物多样性保护关键地区之一。然而近年来,由于经济的快速发展和人类活动的干扰,渭河干流及其南岸支流面临着水源地功能丧失、水资源短缺和水污染加剧等问题,亟需加以保护和治理。为给渭河流域水生态的保护与修复提供
干旱灾害是我国主要自然灾害之一,对人类活动造成不同程度影响,制约人类社会的农业、工业生产和经济发展。关中平原位于陕西省中部,是陕西省人口密集、经济发达的地区。干旱灾害是关中平原的主要自然灾害,通过开展干旱灾害风险评估,为干旱灾害风险管理提供参考。论文以关中平原为研究区域,基于史料与干旱指数对历史干旱灾害演变过程进行分析,建立了干旱灾害风险评估指标体系,构建了干旱灾害风险评估模型,基于模型对干旱灾害
相比于传统的半导体单光子探测器,超导纳米线单光子探测器(Superconducting Nanowire Single Photon Detector,以下简称SNSPD)由于具有探测效率高、暗计数低、恢复时间短等优点而得到了广泛的重视。作为系统探测效率的决定性因素之一,SNSPD光吸收效率的优化和设计一直是该领域的研究重点。尽管在近红外波段提高光吸收效率的SNSPD结构设计已经趋于成熟,但在天文
海洋探测和开发对于建设海洋强国具有举足轻重的作用,需要大量海洋装备的支撑。然而,海洋环境是一种复杂且严苛的腐蚀环境,海洋工程材料在恶劣海洋环境下极易诱发严重的腐蚀损伤,影响其可靠性和寿命,并带来巨大经济损失,成为制约重大海洋工程装备安全运行的最主要瓶颈。海洋工程材料的腐蚀过程受到海水环境中复杂的离子构成(外因)以及不同特性的材料因素(内因)的耦合影响,包含离子传质、化学反应和电化学动力学过程等不同
随着现代工程技术的飞速发展,尤其是在航空航天、道路桥梁和健康医疗等领域,需要对振动进行高精度的测量。激光多普勒测振技术以其分辨率高、测量范围广、响应速度快和非接触式测量等许多优点,在现代测振技术领域发挥着重要作用,因此,研究激光多普勒测振技术具有极其重要的实际意义。本论文采用二极管泵浦1064 nm单频固体激光器作为光源,设计了一种基于Mach-Zehnder干涉仪结构的微振动测量系统研究方案,并
气液两相流动现象广泛存在于动力、石油、化工以及其他一些工业中,狭缝气液两相流动的研究对于压力管道的“破前漏”(LBB,leak before break)设计具有重要的意义。本次研究开展了高压氩气-水贯穿长直狭缝泄漏的可视化实验研究。实验所研究对象为矩形等截面的狭缝通道,狭缝的长度为20.30mm,流道长度设计为45.00mm,宽度有0.08mm、0.1 0mm、0.12mm、0.15mm和0.1
旋转矩形板在航空航天、机械工程等领域中有着广泛的应用,如发动机、涡轮机等大型设备。矩形板在定轴转动状态下由于受到离心力及工作环境的影响,产生的机械振动易对结构造成破坏,因此研究旋转矩形板的振动特性具有重要意义。本文对旋转分数导数型粘弹性矩形板进行了振动特性分析,主要工作如下:(1)推导了旋转分数导数型粘弹性矩形板的运动微分方程及边界条件。建立了旋转粘弹性矩形板的力学模型和惯性、旋转、局部三个坐标系
时域有限差分(Finite-Difference Time-Domain,FDTD)是一种时域电磁场数值计算方法,因其具有原理简单,一次计算可得到宽频带信息等优点而得到广泛应用。采用FDTD方法处理随机媒质电波传播时存在计算量过大的问题,多项式混沌展开(Polynomial Chaotic Expansion,PCE)FDTD方法可以表征随机媒质的电磁特性,它是对电磁场值进行多项式展开,将随机微分
在工程应用领域,压力容器的工作环境复杂,为保证设备安全可靠地运行,对存在缺陷的压力容器安全可靠性评定是非常必要的。本文基于国家自然科学基金“多因素耦合下含缺陷结构概率断裂分析与安全评定研究”的支持,开展了考虑交变载荷作用下含缺陷压力容器结构疲劳寿命的研究,为更准确地进行压力容器的安全性评定提供依据。首先,在罐体内壁设定不同形式的非贯通半椭圆裂纹,建立了含裂纹压力容器罐体的三维有限元分析模型,通过设
本文利用第一性原理方法研究了铁掺杂氮化镓材料的电子结构和光学特性,采用密度泛函理论体系,计算了本征GaN材料和6.25%的Fe掺杂GaN体系的电子结构和光学特性。从理论上讨论了掺杂对体系光电特性的影响,计算所得本征GaN的禁带宽度为3.41 eV,Fe的重掺杂体系明显变窄为3.06 eV,但仍为直接带隙半导体。Fe的掺入导致GaN材料出现不同程度的自旋极化现象,该自旋极化本质的来源为Fe的3d态电