论文部分内容阅读
光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,其应用范围非常广泛、包括光纤通信、光纤传感及作为其他激光器的泵浦源等。光纤随机激光器(Random fiber laser,RFL)是一种新型无腔光纤激光器,利用光纤中随机分布瑞利散射作为反馈。这种无腔光纤激光器具有输出频谱无纵模结构、输出稳定性好以及单横模等特点,并可被设计为可调谐输出、多波长输出、窄线宽输出以及级联输出等结构,具有良好的应用前景。早期对于光纤激光器的研究主要基于单模光纤(Single mode fiber,SMF),由于单模光纤的芯径较小,限制了高功率光纤激光器的发展,同时,由于单模光纤中的后向瑞利散射系数较低,使得光纤随机激光器的激射阈值较高,级联输出困难,且输出效率不高。因此对于新型光纤应用于光纤激光器的研究还需要进一步探索。本文将多模光纤(Multimode fiber,MMF)和铒镱共掺光纤应用于光纤激光器,实现了基于包层泵浦铒镱共掺光纤的光纤随机激光器和基于多模干涉滤波器的光谱调控,获得区别于传统光纤激光器的新性能。最后还利用多模光纤实现了低阈值,高光束质量的光纤激光器。首先,利用铒镱共掺光纤作为增益介质,SMF提供随机分布反馈。在泵浦源976 nm LD功率为9.80 W时,成功地产生了稳定的2.14 W的1550 nm随机激光和线性输出,斜率效率为22.7%。其次定制基于SMF-MMF-SMF结构的多模干涉滤波器(Multimode interference filter,MMIF),并将其放入光纤环形镜(Fiber loop mirror:FLM)实现光谱调控的功能。通过改变MMF的长度,可以在基于MMIF-FLM的光纤随机激光器中生成具有特定波长的单波长随机激光或具有选择性波长间隔的多波长随机激光。由于多模干涉滤波器的宽波长范围,也可以实现级联多波长随机激光。基于多模干涉滤波器的光谱可调光纤随机激光器具有明显的优点,例如全光纤结构,易于制造,宽工作波长范围和低成本等。此外,使用二向色镜构建泵浦全反射腔降低阈值,利用多模渐变折射率光纤发生拉曼效应时的光束净化效应净化多模激光,最终得到阈值为26.5 W,M2值为4.5,在入纤泵浦功率为41.5 W时输出功率为6.28 W的1020 nm光纤激光,斜效率达到41%。另外,提出全光纤化LD泵浦的多模光纤级联拉曼随机激光器实验方案,并进行仿真,得到不同长度的多模渐变折射率光纤时一阶和二阶随机激光的功率输出曲线,结果表明了激光输出功率和阈值与光纤长度之间的关系。本文提出的基于包层泵浦铒镱共掺光纤这种简单而新颖的光纤随机激光器可为开发高功率1.5 μm光源提供有前景的方法,有望广泛应用于光纤传感和光通信等领域。所提出的MMIF-FLM具有良好的功率承受能力,通过结合MMIF FLM和短长度腔,所提出的基于多模干涉滤波器的正向泵浦RFL既具有可调光谱特性也具有产生高功率,高效率随机激光的巨大潜力。所提出的LD直接泵浦的基于多模渐变折射率光纤的拉曼光纤激光器为开发高功率,高光束质量激光器提供新思路。