论文部分内容阅读
生菜叶片通常有红色和绿色两种,红叶生菜因具有独特的颜色、质地和保健功能,越来越受到人们的喜爱。生菜叶片红色的形成是由于花青素的积累,在矮牵牛、拟南芥以及玉米中,花青素合成的分子机理已经有详细的研究,但是生菜中花青素的研究报道相对较少。为了克隆调控生菜叶片红色深浅的基因,本实验室将绿色油麦菜Y37与浅红色生菜S1杂交,杂交后自交创建颜色分离群体,对Y37×S1重组自交系进行遗传分析,发现实验室已经克隆的4个生菜叶片颜色调控基因(3个调控基因RLL1-3和1个结构基因RLL4:ANS)并不能完全解释生菜中叶片颜色的差异,筛选了114个家系,经过表型鉴定,共得到32个叶片颜色存在分离的F4家系,利用RLL14基因相关的分子标记检测,发现Q54家系为四个位点纯合,但是叶色存在分离的群体(叶深红与叶浅红的分离比≈3:1),表明该家系的叶片颜色差异由新的单个叶片颜色基因控制的,利用BSR-Seq的方法,定位该分离群体的叶片颜色控制基因。将25株浅红植株和25株深红植株分别混成一个极端表型池,取相同样品混池提取RNA,进行RNA测序。分析测序数据发现,在9号染色体的63 Mb69 Mb区域内,等位基因频率具有显著差异,推测控制生菜叶片红色深浅的基因位于此区域内。进一步开发CAPS和SNP分子标记,筛选交换单株,最终将候选基因定位在9号染色体的63.898 Mb64.256 Mb区域内,约357.5 Kb。对该区段的基因注释分析,发现该区段内有三个与花青素相关的基因,进一步比较三个基因在两个亲本中的序列差异和表达量差异,最终将编码WD40蛋白的基因确定为候选基因候选基因,命名为RLL5。在亲本中RLL5基因存在两处碱基的突变,均发生在保守结构域,第402bp(即第134个氨基酸)处单个碱基的突变导致氨基酸发生突变(缬氨酸变成天冬氨酸),使得RLL5基因功能缺失。比较深红色生菜与浅红色生菜叶片花青素合成相关基因的表达量,发现在深红色生菜叶片中,花青素合成相关基因的表达量明显升高,RLL5基因的表达量没有明显差异。对两种颜色的生菜叶片中花青苷类化合物的种类及含量进行测定,显示深红色生菜叶片至少存在19种花青素类化合物,它们的含量均高于浅红色生菜叶片,这使得深红色生菜叶片中花青素的总量增多,显示深红色的表型。通过营养物质含量的比较,发现深红色叶片生菜的品质高于浅红色叶片的生菜。同时,对M9×S1 F2代分离群体进行遗传分析,发现该群体叶片颜色也存在分离(深红色叶与浅红色叶),而且实验室已经克隆的上述五个生菜叶片颜色调控位点并不能解释M9×S1群体叶片颜色的差异,统计结果显示该群体叶深红与叶浅红的分离比≈3:1,这表明该家系还存在一个新的红色叶片控制基因。同样利用极端混池测序的方法进行分析,发现在1号染色体的69 Mb213 Mb区域内等位基因频率具有显著差异,我们推断该区域内存在调控生菜叶片红色深浅的位点。通过开发CAPS和SNP分子标记,筛选交换单株,将候选基因定位在73.58 Mb213 Mb区域内,由于该区段内没有合适的分子标记,只能将基因定位这一区域。克隆生菜中花青素合成相关的基因,将有助于培育花青素含量丰富的生菜,阐明生菜中花青素合成途径以及花青素在生菜中积累的分子机制。