论文部分内容阅读
光纤中控制光的传播速度甚至将光“停”下来,在全光通讯和光信息处理中具有重要意义。目前的光纤通信系统中,存在着较多的光-电、电-光转换过程,给光纤通信系统带来诸多不利因素。为了充分利用光纤通讯的带宽优势,人们一直梦想着能够实现全光通信技术。缺少实用的光路由器是全光通信发展的一个瓶颈。而其关键部件全光缓存器尚没有实用的技术途径。实现光缓存的办法之一就是——用光学的手段来控制光速。这就是研究光纤中的快慢光技术的目的——研制一种全光存储器或是高精度的光学可控延迟线,以解决全光通讯中光交换/光路由的问题。此外,快慢光现象的研究还可以应用在光信息处理和光存储等方面。本文对光纤中光速减慢技术(“慢光”技术),特别是基于受激布里渊放大的慢光技术进行了理论和实验上的研究。本文首次提出了一种可以增强布里渊慢光缓存器延迟性能的高功率布里渊放大器。泵浦和信号的功率之比如果越高会带来更高增益,而信号的延迟时间同增益成正比,所以也会带来好的延迟性能。高功率布里渊放大器利用较短的光纤长度提高了布里渊阈值,从而增加了可用的泵浦功率,所以可以提高泵浦和信号的功率比。由于增益饱和是布里渊慢光缓存器性能的主要限制之一,本文着重研究了这一特征参数。同时还测量了其延迟性能,噪声指数等特征。此外,还分析了高功率布里渊放大器的性能对其慢光缓存器应用的影响。结果表明,对输入功率-36dBm的信号,相对于低功率布里渊放大器,通过使用高功率布里渊放大器,延迟时间可以增强超过24ns。本文对布里渊慢光进行了深入的理论分析,推导了基于布里渊放大的慢光缓存器的存储能力的公式,并通过数值模拟给出了其最大能存储的比特数及获得最佳存储比特数的相应的比特率。首次从物理机理上解释了目前所有的基于SBS的慢光实验其延迟量都没有超过1个比特的原因。全光缓存器的宽带应用是发展趋势。通过调制泵浦增加泵谱光谱宽度可以实现宽带布里渊放大。我们针对宽带布里渊慢光缓存器在不同泵浦带宽(或增益带宽)的情形进行了详细的理论分析。结果表明,对RZ码,其存储能力局限在1.2比特左右。此结果是窄带情形的2倍多。本文还研究了基于光纤环形共振腔的慢光现象,详细分析了其各种特性。着重分析了其振幅损耗系数对系统延迟和色散性能的影响。结果表明,环内有增益时,且与振幅耦合比乘积为1时会出现延迟和色散突变等新现象。