基于混合法珀微腔的光纤声与温度双参量传感研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:t_bear
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于法珀微腔的光纤传感器具有体积小,质量轻,不受电磁干扰等优点,在航空航天领域中发展前景广阔。声与温度是表征航空发动机状态的重要参数,基于传感器阵列的声定位则可以进一步实现声信息矢量探测。论文针对上述需求,研究了基于混合法珀微腔的光纤声与温度双参量传感器,分析了传感器的干涉理论和解调方法,进行了声与温度双参量测试实验;在此基础上,将光纤法珀传感技术与阵列声定位技术结合,进行光纤声定位传感研究。本文完成的具体工作如下:1.在光纤法珀干涉理论基础上进行了基于混合法珀微腔的光纤声与温度双参量传感器研究。混合法珀微腔通过硅-玻璃-硅三层结构实现,其中空气微腔用于测声参量,硅微腔用于测温度参量。2.进行了基于混合法珀微腔的光纤声与温度双参量传感器的传感灵敏度分析,根据混合法珀微腔的干涉光谱和待测参量的特点进行了解调方法研究,声信息采用基于单频激光的强度解调,温度信息通过基于宽光谱分析的腔长进行解调。3.搭建了声与温度双参量传感的实验系统并进行了实验研究。实验结果表明该传感器可有效地恢复出声信号和温度信息。在21k Hz时传感器的声传感灵敏度为4.65m V/Pa,在20℃~120℃范围内温度传感灵敏度为123.10nm/℃。实验验证了传感器的全向特性,信噪比可达70d B。4.研究了基于传感器阵列的光纤声定位技术,着重分析了基于时延估计的声定位算法,分析了影响定位精度的因素,搭建了阵列声定位实验系统,实验结果表明研制的光纤声与温度双参量传感器可以实现声定位。
其他文献
弯曲会引起光纤的弯曲损耗,通过检测弯曲光纤损耗的变化,可以实现对引起该变化的参量的传感。本论文以弯曲单模光纤结构的光纤传感器作为研究对象,为了实现液体折射率测量,克服解调中的光源功率波动和温度交叉串扰等问题,设计了两种新型的解调方法。主要工作包括:1)对弯曲单模光纤进行了理论研究。给出了描述光纤弯曲损耗的两种模型,解释了光纤弯曲损耗随波长和弯曲半径波动的原因;从几何光学和模式理论两种理论出发,定性
本文基于当前航空航天加工对大型薄壁构件的需求,对镜像铣削这一以课题展开研究。以五自由度混联机器人Tri Mule为主体搭建双机器人镜像铣削平台,双机器人的末端分别装有铣刀与支撑头,相对薄壁构件作镜像协同运动,对薄壁构件铣削加工过程中振动现象进行抑制。支撑头的结构、物理参数以及机器人速度规划的准确性都直接影响到薄壁构件的成品质量。基于上述研究目标,全文取得了如下创造性成果:在机器人速度规划方面,基于
随着科技的发展,深空领域的空间技术发展水平已经成为一个国家综合实力的体现。航天器在使用过程中,必须面对强磁场,超低温等极端的外部环境。因此,研发出温度耐受性好、抗电磁干扰和稳定性更高的传感器及传感系统,是该领域的研究重点。光纤传感仪器具有抗电磁干扰、体积小、质量轻、精度高等特点,同时,光纤传感器对低温有很好的耐受性,这些使其在航天极端环境有着很好的应用前景。低温是航天器运行时必须面对的极端环境之一
本课题来源于天津市科技重大专项与工程项目:工业(汽车)喷涂机器人研发(编号:15ZXZNGX00200)。喷涂机器人是机器人技术与喷涂技术结合的产物。本文研究了静电旋杯喷涂机器人离线编程过程中所需的喷涂模型、刷子表、折返喷涂轨迹等关键技术,为提出先进可行的汽车表面涂装离线编程方法打下基础。本文首先研究了静电旋杯的工作原理与工艺参数影响。根据静态沉积模型优缺点,提出了静电旋杯动态模型。在此基础上求解
桥梁在日常生活中发挥着举足轻重的作用。然而,其状况会因为环境和负载效应而恶化,严重时会影响到行人和车辆的安全。因此,定期检测桥梁的当前状况,及时对裂缝区域进行修复是十分必要的。传统的桥梁养护方法多基于人工检测,不仅耗时长,而且检测效率较低。基于数字图像处理的桥梁裂缝检测技术兼备了检测速度快与检测便捷的优点。然而,桥梁裂缝图像中往往包含复杂的背景信息,数字图像处理方法易受到噪声干扰,从而导致检测精度
本文密切结合铸造件后处理打磨的实际工程需求,以一种并联力反馈手柄为主手,以Tricept混联机器人为从手,对力反馈主从控制磨削控制策略与实现方法开展深入研究。首先,在简要分析力反馈手柄机械结构的基础上,根据封闭矢量法建立该力反馈手柄的运动学模型,根据虚功原理法建立机构的静力学模型。其次,在分析Tricept混联六自由度机器人机构构型基础上,根据封闭矢量法并结合数值迭代和D-H方法建立该机器人的运动
基于回音壁谐振模的光学传感器具有高传感灵敏度、小体积等优点,在海洋、生物等领域具有广泛的应用前景。本文基于空心微球腔开展回音壁谐振模传感器的研究,空心微球腔的传感器和微流体的传输通道合二为一,可以通过内部通入微流体进行多种参量的传感,实现灵活的传感器设计,本文充分利用这一优势,通过注入热光系数高的微流体和磁敏感的磁流体进行光纤温度和磁场传感器的研究。本文的主要工作包括:1.概述了可激发回音壁谐振模
表面等离子体谐振(SPR)技术具有灵敏度高、测量范围宽、实时监测、测量无需标记等特点,结合光纤传感技术成本低廉、结构简单、抗电磁干扰等优点,使得光纤SPR传感器被广泛应用于生物化学、食品安全、环境工程等领域。本论文对多模-无芯-多模光纤(MNM)结构的SPR传感器的折射率和磁场传感特性进行了研究。完成的主要工作包括:1、对基于MNM结构的SPR传感器进行了理论分析。从多层膜传输理论出发,对传感器的
光纤布拉格光栅(fiber Bragg grating,FBG)传感器由于其体积小、质量轻、灵敏度高、便于复用、抗电磁干扰能力强等优势,近年来被广泛应用于各个领域。其中基于F-P可调谐滤波器的光纤光栅传感解调方法是光纤传感解调领域的关键技术,但是F-P滤波器由于压电陶瓷特性导致扫描波长非线性,影响到解调结果的稳定性。本文基于F-P可调谐滤波器的FBG解调方案,从硬件方面提出了基于长光程差迈克尔逊光
双马赫曾德干涉型光纤扰动预警定位系统因其灵敏度高、结构简单、可在复杂环境中实现长距离定位等优点,在周界安防领域得到广泛应用。由于单一周界安防系统会不能将入侵事件像摄像头那样进行可视化显示,因此在长距离输油输气管道、复杂地形的安防依然存在较大的考验。为了解决上述问题,本文在双马赫曾德干涉型光纤扰动预警定位系统的基础上,提出了一种基于四旋翼无人机的双马赫曾德干涉型光纤扰动预警定位系统的视频联动系统。本