论文部分内容阅读
为了为开发空心弹提供技术基础,应用Fluent软件仿真多种结构方案的空心弹空气动力流场,得到了不同马赫数、不同攻角下的空气动力参数,基于弹丸外弹道模型和优化设计理论建立了空心弹气动力-外弹道优化设计模型。对初步设计的模拟超速脱壳穿甲弹的空心训练弹进行优化,采用蒙特卡罗方法和弹丸外弹道质心运动方程组建立弹丸立靶散布仿真模型,对经优化设计后的空心训练弹和制式超速脱壳穿甲弹进行模拟打靶并进行弹道一致性检验。应用LS-DYNA软件研究了空心弹落地碰击土壤介质时的跳弹特性。通过Fluent数值模拟得到空心弹典型设计方案简化模型在不同马赫数下的阻力系数,运用Matlab软件数值求解空心弹外弹道质心运动微分方程组得到弹道顶点和落点诸元。将以上所得阻力系数和弹道诸元与公式计算结果进行对比的结果表明:来流马赫数为2.0~4.4时,无弹带结构的空心弹模型用两种方法所得外弹道诸元结果相差很小;弹丸头部前缘厚度在可信区间内对阻力系数影响较小,但传统的弹带结构对阻力系数的影响较大。通过Fluent软件仿真三种典型空心弹结构方案空气动力流场,得到了不同马赫数、不同攻角下的阻力系数、升力系数、俯仰力矩系数和压力中心位置,应用Matlab软件拟合了阻力系数、升力系数、俯仰力矩系数和压力中心位置与攻角的关系式。空心弹阻力系数、升力系数随着攻角的增大而增大。不带一次项的二次函数式可以较为准确地描述混合锥形空心弹和外锥形空心弹阻力系数与攻角的关系;而三次函数式可用来描述混合锥形空心弹升力系数、俯仰力矩系数与攻角的关系;同一马赫数下,随着攻角的增大,压心位置向弹底移动;同一攻角下,随着马赫数的增大,压心位置也向弹底移动。通过空心弹气动力-外弹道优化设计模型对空心弹进行结构优化设计,将优化后的空心训练弹外弹道参数与制式脱壳穿甲弹的外弹道参数进行对比,并对优化后的弹丸进行内弹道设计。射程为2500 m时,两者所需时间仅相差0.0047 s,相对误差仅为0.26%。优化后空心弹外弹道性能参数与制式超速脱壳穿甲弹外弹道性能接近。通过弹丸立靶散布仿真模型对制式超速脱壳穿甲弹和优化后的空心弹进行1000 m、2000 m、3000 m立靶模拟射击仿真,每种射程下模拟射击3组,每组射击5发。应用国家军用标准GJB 349.17《常规兵器定型试验方法》中的弹道一致性检验方法和另一种较常用的弹道一致性检验分组检验法对两种弹丸模拟射击得到的结果进行弹道一致性检验,均可得到两种弹丸满足弹道一致性结果。通过ANSYS/LS-DYNA软件数值模拟弹体材料为钨合金的空心弹以不同着速、不同落角和不同转速落地碰击土壤,得到了空心弹在土壤中的运动轨迹。相同落角下,着速越高,空心弹在侵彻过程中的质量损失越大,对土壤的侵彻深度也越深。相同着速下,落角越大,空心弹的侵彻深度越深,落角越小,空心弹越容易发生跳弹。同一着角、着速下,转速越高,空心弹侵彻土壤的深度越深。侵彻过程中弹体变形和质量损失均较大,但未解体。