论文部分内容阅读
本文研究基于这样一个事实,就是由于输电系统的扩展无法与日益增长的输电服务相协调而造成了目前电力系统的过载严重问题日益凸显。之所以造成这样的问题是由于环境和经济的因素导致建造新的传输线路是困难的。因此,通过研究提高当前电力系统的输电能力来满足日益增长的电力需求以确保电力系统的安全运行是一个亟待解决的问题。潮流控制设备比如柔性交流输电设备(FACTS)对时下电网新的运行方式挑战提供了解决方案。特别的,晶闸管控制的串联补偿设备(TCSC)是一种被选来研究的很有效的FACTS。TCSC通过改变输电线路参数来控制网络潮流。TCSC对网络的影响可以看成是在相关的输电线中嵌入一个可控的电抗。串联电容补偿通过抵消感抗部分减少传输线的等效串联阻抗。因而提高了功率传输能力。这样在不用重新安排发电计划和改变网络拓扑结构的情况下,通过控制潮流可极大提高系统的性能。而且这样也不会超越导线的热容量的限制同时提高了电力系统的稳定边界。为了通过采用这些设备而获得最大的效益,需要一个有效的控制方式。在研究调查柔性交流输电设备(FACTS)的大量应用情况后,可知针对不同目的的有效控制依赖于控制装置的安装位置。因此,运行人员面临这样一个问题就是在什么位置安装FACTS设备能达到期望的目标。目前已有大量研究在于通过FACTS设备的最优配置来改善现有电力系统性能,但对如何缩减最优安装位置的搜索范围显得无能为力。基于此,本文重点研究了如何使用和选择柔性交流输电(TCSC)设备的最优安装位置来优化电力系统性能。提出了一种用于确定晶闸管控制的串联补偿设备(TCSC)最优位置的最小切割算法(Min-cut algorithm)。一日TCSC设备的安装位置确定了,为其寻求最佳参数的最优化问题就可以得到相应的解决。该方法可以寻找出系统中最需要安装设备的配置点,从而帮助调度人员以一种更加安全和高效的方式进行调度。采用本文方法大大减少了待选位置,从而大大减少了为提高电力系统性能而需要运行人员实际调查才能确定TCSC配置点的工作量。本文的研究重点是通过TCSC设备的最优配置点的选择及其最优参数的确定来优化电力系统性能。本文尤其能够通过解决电力系统阻塞来提高电力系统的传输能力和考虑了电力系统静态稳定与暂态稳定约束下的电力系统性能。本文所提到的电力系统性能通过对解决安全约束最优潮流问题,全面提高电力系统传输能力,阻塞管理和最大负荷承载能力等四个问题来进行衡量评价。研究内容在论文第二章到第七章进行了详细介绍,论文的要旨概括如下:1.详细介绍了最小切割算法来确定电力系统最小切割的过程。介绍了电力系统瓶颈的概念和TCSC的合理配置。另外介绍了开放电力市场环境下输电领域重要议题,输电阻塞影响以及目前解决输电阻塞的方法特点。2.提出应用最小切割算法来确定TCSC的合理位置。研究了在正常和电网故障条件下采用TCSC设备优化配置的安全约束最优潮流问题。最优潮流问题用以确定TCSC设备的最优参数值,它以电力系统获得经济效益和静态安全为目标。3.介绍了提高输电系统最大输电能力(TTC)的问题。提出了在安装TCSC设备和未安装TCSC设备条件下的电力传输能力的评价流程。4.提出了一个叫做效益指标的概念,该指标用来确定输电阻塞管理中TCSC的合理位置。该指标是指在有和没有安装TCSC的情况下最小发电成本的变化量。该指标可用来计算每个TCSC的位置和评价其在支路中的合理性。当取得最大的效益指标的支路就是TCSC所要确定的最优位置。5.提出了基尔霍夫电流定律和TCSC的最佳位置判定准则来确定TCSC设备最佳安装容量的算法,通过获得最大负荷承载能力和设备安装最优费用来确定其最佳安装容量。仿真结果表明所提方法可以有效地找到TCSC的安装位置,数量和容量,且该方法提高了系统的负荷承载能力和最小化了TCSC设备的安装费用。全文仿真结果表明了在TCSC设备优化配置下大大提高了电力系统性能。本文主要创新:1.提出了一种以最小切割来确定TCSC设备安装位置的方法。2.提出了利用最优潮流问题来确定TCSC设备的最优参数值,它以电力系统获得经济效益和静态安全为目标。3.提出了一种基于TCSC设备的效益指标,该指标用来确定输电阻塞管理中TCSC的合理位置。4.考虑电网最大承载能力以及设备安装最优费用两种因素,提出了一种TCSC设备的优化配置方法,仿真结果表明了该配置方法较好地兼顾了以上两种因素。5.针对故障干扰条件下的电网暂态稳定运行情况,提出了一种TCSC设备的优化配置方法,同样由仿真验证了该配置方法对系统暂态具有积极稳定作用。