定向冷冻-压力浸渗制备仿生Al/B4C与Al/Al2O3复合材料

来源 :吉林大学 | 被引量 : 0次 | 上传用户:newtonmark
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
21世纪的一个重大挑战是开发新型轻质高强韧结构材料,以满足空天、建筑和交通等领域的应用。金属/陶瓷复合材料由于兼具金属的塑韧性和陶瓷的高刚度、高强度等优点是最理想的材料之一。然而,受材料、结构和工艺等多重因素影响,制备高性能复合材料需解决以下三方面问题:一是传统的金属基复合材料多以均匀复合为特征,不利于发挥组分之间的协同耦合响应机制;二是由于传统设计方法和制备工艺的约束,导致材料制造困难;三是缺乏具有普适性的精准制备策略,常需因材而异。如何解决这些共性问题一直是复合材料制备科学的研究难点。“师法自然”是解决上述问题的有效途径。本论文着眼于这一点,以三种自然生物材料为指引,分析了贝壳、羊角和骨骼的多级次结构与其优异性能的响应关系,通过提取其结构单元为设计模板,用于构筑具有仿生结构特征的高性能金属/陶瓷复合材料。首先,从制备技术的角度综述了近年来仿生材料的研究现状,重点阐述了定向冷冻技术的研究进展及其在仿生复合材料结构调控方面的技术优势。将新兴定向冷冻技术与传统熔体浸渗工艺相结合,并融合润湿性调控、乳液溶剂模板和固相梯度分布等思想,开发了多种仿生材料制造新方法。采用Al-B4C、Al-Al2O3为材料研究体系,创制了多种仿生结构金属/陶瓷复合材料,并研究了制备过程的关键因素与调控策略。主要研究结果如下:(1)受贝壳层状结构和强韧化机制的启发,发展了一种可通用于多种材料体系的定向冷冻-反应烧结-压力浸渗工艺,制备了轻质高强韧层状Al/B4C复合材料。将定向冷冻技术与反应烧结相结合,以原位转化物相的方式解决了B4C骨架成型难、易坍塌的问题。反应生成的Ti B2改善了Al与B4C的润湿性,在低温(850 oC)较小压力(2 MPa)下制备了致密的Al/B4C复合材料。骨架中游离碳(来自碳化硼原料和分散剂碳化)的消除,避免了复合材料中Al4C3的形成;Ti B2的生成,减缓了Al与B4C的化学反应。探明了复合材料物相组成和微观结构对其力学性能的影响。得益于脆性反应产物的减少和层状结构的完整,Ti O2加入量为20 wt.%的复合材料强度和韧性均达到最大。通过对裂纹扩展路径和断口形貌进行分析,发现层状复合材料良好的韧性源于纯Al的固有高延性和层状构型带来的裂纹偏转、金属桥接等外增韧机制。(2)受羊角层状/管状结构和吸能增韧机制的启发,开发了一种乳液定向冷冻-压力浸渗技术,制备了具有层状/管状结构的Al/Al2O3复合材料。首次将乳液溶剂模板与定向冷冻以及压力浸渗技术进行了结合,突破了传统定向冷冻仅能获得单一构型的约束。研究了溶剂组分(水和环己烷)对结晶体几何特征和骨架微观结构的影响。随环己烷加入量增大,浆料粘度变大,骨架由层状结构逐渐转变为均匀构型,同时在环己烷:水体积比为50:50时,获得了最接近羊角的层状/管状复合结构。分析了层状/管状Al/Al2O3复合材料微观结构与其力学性能的响应关系。层状/管状结构的协同变形行为提高了材料的能量吸收能力,赋予了复合材料优异的力学性能,其单位体积能量吸收量、压缩屈服强度、弯曲强度和断裂韧性(KIc),分别达到了107±11 MJ/m3、188±9MPa、262±9 MPa和8.1±0.3 MPa×m1(14)2,远高于天然羊角材料,在很大程度上实现了师法自然而又在某一方面超越自然的目标。(3)受骨骼层状/梯度结构和轻质强韧特征的启发,结合定向冷冻技术和溶质传输思想,开发了一种沉降或离心-定向冷冻-压力浸渗新技术,制备了具有层状/梯度结构的金属/陶瓷复合材料。在沉降-定向冷冻中,以莫来石纤维和氧化铝颗粒为例,重力沉降造成纤维梯度分布,再定向冷冻锁定并引入层状结构。研究了陶瓷分布与几何形貌对骨架微观结构的影响,发现冰晶可以推动氧化铝颗粒,但难以推动莫来石纤维。在离心-定向冷冻中,氧化铝颗粒在离心力作用下梯度分布,研究了离心旋转速率和离心旋转时间对骨架结构的影响。增大旋转速率或增长旋转时间都可以使陶瓷骨架的梯度特征更明显。压力浸渗Al或Al合金至陶瓷骨架中,制备了具有与骨相似结构和功能特征的复合材料。揭示了复合材料组分分布和微观结构与其力学性能之间的关系。复合材料强度、硬度和耐磨性的逐渐增大归因于陶瓷相含量的增大,而断裂韧性的提高归因于金属相含量的增大和层状结构带来的裂纹偏转、金属桥接、片层拉拔等增韧行为。总之,本文利用定向冷冻-熔体浸渗技术探索制备了仿生金属基复合材料,在一定程度上实现了金属与陶瓷的仿生复合化,以期为发展轻质高性能复合材料及其制备技术提供些许参考。
其他文献
引入180 nm的四氧化三铁纳米粒子(Fe3O4 nanoparticles,FeNPs)标记抗体,将FeNPs中的Fe3+作为电子自旋共振(electron spin resonance,ESR)探针,以微米级粒径的琼脂糖微球为固相载体,建立了一种新的免疫分析方法并将其用于兔免疫球蛋白G(immunoglobulin G,IgG)的检测。采用了免疫夹心法和免疫竞争法两种方法并比较了两种方法的灵敏
柴达木周缘位于青藏高原的北缘,中央造山带重要的组成部分,包括东昆仑和祁连两大造山带。其独特的大地构造位置、复杂的构造环境、频繁的岩浆活动及不同程度的变质作用,记录了区域构造-岩浆-成矿作用的造山旋回过程,不仅造就了区内异常丰富的矿产资源,同时也是揭秘大陆岩石圈时空结构及不同圈层相互作用和显生宙地球动力学演化的理想试验地。论文选取了柴达木周缘近年来新发现的产在陆相火山岩区的具有代表性的6个典型矿床为
天然气水合物作为一种新型战略资源,因其巨大的储量而备受关注。开采天然气水合物的主要思路是通过降压、加热、气体置换、注入抑制剂等方法打破其原有的相平衡状态,使其分解为水和甲烷气并对产生的气体进行抽取回收。在流体抽取过程中,受其拖曳作用影响,沉积物颗粒可能发生脱落和运移,即出现出砂现象。这一方面可能造成地层亏空、井壁失稳等问题;另一方面,流体中携带的固体颗粒会对电潜泵、井筒等开采装置造成磨损及堵塞,影
金属纳米晶体与传统金属相比具有独特的力学性能,例如金属纳米晶体的强度一般要远高于同种材料的强度,因此在很多领域都有潜在的应用。然而,由于材料制备方法和测试技术的不足,目前在金属纳米晶体的研究中,还存在诸多问题,例如,关于晶粒的尺寸减小到20 nm以下会出现反Hall-Petch关系,就颇有争议。纳米晶体金属和薄膜在制备中不可避免地会引入空位缺陷,同时最近的研究特意制备多孔材料以减轻材料的质量,然后
碳纤维增强聚醚醚酮复合材料具有高断裂韧性、优异的力学性能,同时可以进行重复加工,广泛的应用于航空航天、汽车制造、医疗材料等领域。复合材料中界面起着传递载荷的作用,其结构与性能直接影响复合材料的性能。然而传统的环氧型碳纤维无法承受聚醚醚酮高达370°C的加工温度,容易在界面处引起缺陷导致性能下降。针对这一问题,本文设计合成适用于聚醚醚酮体系的碳纤维上浆剂,目的是使其既与聚醚醚酮基体有较好的相容性,又
在传统油气资源逐渐枯竭的当下,天然气水合物作为一种清洁高效的未来能源日益受到世界各国重视,以低温高压为形成条件的天然气水合物在自然界中主要赋存于陆域永久冻土带和海域深海沉积物中。海底天然气水合物分布广泛,然而已有的钻探结果显示海底天然气水合物无论是平面上还是垂向上均呈现出明显的不均匀分布特征,以“运”—流体运移条件和“聚”—沉积层储集条件为代表的水合物成藏要素控制着海底水合物的形成与富集成藏过程。
铀矿资源作为国家能源-战略型资源,是我国军工/军事、国防工业、能源开发及国民经济有序增长的重大需求之一。砂岩型铀矿是目前所有铀矿类型中最具开采潜力的铀矿床,表生铀元素伴随着岩石的剥蚀、水解及风化,铀元素迁移及富集成矿均需要较为特殊的盆地沉积条件及盆地构造背景,使得砂岩型铀矿在成矿过程呈现一定的空间选择性分布规律,在垂向空间分布上具有成层性、分带性等特征。因此,砂岩型铀矿垂向空间展布特点和分带特征对
多孔材料顾名思义,是一类具有一定数量和尺寸孔道结构的材料,其在自然界中就已广泛存在,例如木材,珊瑚礁,海绵,木炭等。随着工业的需要,越来越多具有独特性能的多孔材料被开发和制备出来,例如沸石分子筛,介孔氧化物,金属-有机骨架(MOFs,Metal-organic frameworks)材料,多孔有机框架材料(Porous organic frameworks,POFs)等。其中,沸石分子筛是由TO4
以二氧化硅为基质的发光复合材料具有生物相容性好、化学稳定性高、表面易于功能化等优点,在生物成像,化学传感、光电子器件制造、防伪技术等领域具有巨大的应用价值。然而,目前发光二氧化硅基复合材料存在着制备过程复杂、发光物质负载效率低、光稳定性差、发光量子产率低等问题。本论文基于原位合成策略,制备了一系列具有优良发光性质和光稳定性的二氧化硅基复合材料,研究其发光机制,并探索了这些材料在细胞成像、荧光防伪、