论文部分内容阅读
用于矿山生产的球磨机衬板是球磨机主要易损部件,磨机运转时,衬板要受到介质和物料的冲击、磨剥和矿浆腐蚀等作用,形成了衬板冲击磨损、疲劳磨损、剪切磨损、磨料磨损和化学腐蚀等,使衬板成为矿山生产的一项主要成本支出,初步估算国内矿山用耐湿磨衬板是一个规模达几十亿市场。采用高锰钢、合金钢制造的衬板在湿式球磨机内使用寿命较低,当代性能优异的耐磨材料高铬铸铁特别适用于这种湿态磨料磨损场合,而单一高铬铸铁不具备强韧结合的优良性能,需将其与高韧性碳钢复合制成双金属材料,但由于传统复合铸造型腔中氧气使先浇注金属发生氧化,导致界面结合质量不高,本文利用消失模铸造特有负压工艺和还原性气氛,研究和开发一种双金属液消失模复合铸造工艺,生产适用于矿山湿式球磨机的高铬铸铁/碳钢双金属衬板。首先采用稀土、钙、硅和少量低熔点金属组成的复合变质剂改善共晶高铬铸铁微观组织形态及其冲击韧性。然后对高铬铸铁/碳钢双金属衬板的消失模复合铸造工艺进行了系统研究:采用有限元软件数值模拟(ANSYS、ProCast)、力学模型计算相分析双金属液消失模复合铸造工艺的可行性;为提高复合界面质量,采用基于信息采集技术的温度场测试、传热模型理论计算探索碳钢、高铬铸铁的合理浇注顺序、最佳复合温度以及浇注间隔时间;为提高工艺设计效率,基于C#平台、ACCESS数据库技术开发双金属液消失模复合铸造工艺设计系统;最后采用CAD/CAM技术快速制造了双金属衬板EPS模样,以定量浇注方式,在60s、75s、90s三种浇注间隔时间试制双金属衬板铸件。为验证工艺的合理性:通过微机控制电子式万能试验机、摆锤式冲击试验机、洛氏硬度计、显微硬度计对工艺试样进行相关力学性能测试;通过光学显微镜、扫描电镜(SEM)、能量色散X射线光谱仪(EDX)和X射线衍射分析仪(XRD)对工艺试样及其界面的微观组织进行了分析;最后在湿式球磨机内全工况条件下,双金属复合衬板和原合金钢衬板以维度方向间隔布置,进行装机磨损对比试验。复合变质效果显示:高铬铸铁进行晶粒明显细化,由纤维状菊花团向孤立分散的小块状转变,冲击韧性明显提高。双金属衬板凝固过程的热-结构耦合结果显示:后浇入高温碳钢液为界面附近形成冶金结合提供了必要的热力学条件:应采用合适热处理工艺消除界面部分的残留应力,防止材料在结合面处开裂;应减小衬板碳钢层圆弧面设计半径,当衬板凝固收缩后自动增大半径补偿变形以适应球磨机内的安装圆弧面。根据双金属液消失模复合铸造的工艺分析:避免铸型顶部、侧部在浇注过程中或是浇注完毕后发生塌箱的关键条件是整个铸型提供足够大P阻(涂料层和型砂移动时单位面积上受到的阻力),采用加大抽真空工、高强度涂料层(2-3mm)等措施保证工艺实施中不发生塌箱;确定钢、铁最佳组合温度(高铬铸铁表面1210℃,碳钢1550℃);两种金属最佳浇注间隔时间为75s;复合界面位于碳钢层厚度下限范围15.2mm处。对复合界面组织研究发现:碳钢液润湿于高铬铸铁表面为其复合界面形核提供了条件,后浇入的碳钢液复制高铬铸铁随机起伏波纹表面,界面呈现犬牙交错状,组织较致密,无明显缩孔和疏松缺陷,呈良好冶金结合状态;建立过渡区域传质模型,理论计算与电镜扫描结果保持一致,铬、铁、碳原子由高铬铸铁侧向碳钢侧进行短距离传质,其扩散规律为Tiller衰减曲线;影响高铬铸铁-碳钢双金属衬板复合质量最重要的工艺参数是复合浇注时间间隔。间隔时间过短(60s),两种金属形成对冲而混相;间隔时间过长(90s),两种金属难以形成有效冶金结合;间隔时间合适(75s),两种金属材料之间呈现较高质量、足够强度和厚度的冶金结合。双金属复合材料的试样的力学性能得到大幅度提升,洛氏硬度达到61HRC,冲击韧性达到16.5J/cm2,抗弯强度达到1600MPa。装机试验结果显示:九个月后,碳钢/高铬铸铁双金属衬板仍保留光滑平顺的圆弧过渡轮廓,厚度方向尺寸均匀减薄,仍然保持原有高铬的银色光泽;而原合金钢衬板由于冲击、腐蚀和磨损的循环交替作用,其曲面轮廓变为粗糙、间断的冲击尖峰,厚度方向尺寸减薄至只有10mm,整个衬板表面完全被氧化并呈现红锈色,已经报废必须更换新衬板。服役后衬板失重结果对比显示高铬铸铁/碳钢双金属衬板的相对耐磨系数是原有合金钢衬板的3倍。本文成功将消失模技术应用于双液双金属复合衬板的生产,将碳钢的高韧性、高延展性和高铬铸铁的高强度、高耐腐蚀磨损性结合在一起,解决硬度与韧性的矛盾,降低生产成本。