论文部分内容阅读
本论文致力于耐水性多金属氧酸盐的合成与表征,并针对所合成的耐水性多金属氧酸盐的特点,选用不同类型的催化反应(酸催化、氧化催化和光催化),分别考察了这些材料在非均相催化反应中的性能。首先利用溶胶-凝胶结合程序升温的溶剂热方法,制备了具有光催化活性的二氧化钛负载型酸式钨磷酸铯盐CsxH3-xPW12O40/TiO2(x = 0.5、1.0、1.5、2.0、2.5和3.0)复合材料。通过紫外–可见光谱、红外光谱、拉曼散射光谱和X射线粉末衍射等表征手段对所合成材料的晶相结构和光吸收性质进行了结构表征。经研究发现,形成复合材料后,母体酸式钨磷酸铯盐的基本结构仍然保留,而且与载体二氧化钛之间通过化学作用相结合,这种强的化学作用导致酸式钨磷酸铯盐分子被牢固地束缚在二氧化钛网络上。利用扫描电镜以及吸附测定等表征手段对复合材料的形貌以及表面物理化学性质进行了表征。结果表明,CsxH3-xPW12O40/TiO2具有介孔结构以及较好的表面物理化学性质(BET比表面积较高、孔径较大且均匀分布)。通过水溶液中三种有机污染物(对硝基苯酚、甲基橙和罗丹明-B)的紫外光光催化降解反应,系统研究了不同铯与氢摩尔比时得到的CsxH3-xPW12O40/TiO2的光催化活性差异,并与母体CsxH3-xPW12O40和商用二氧化钛光催化剂(P25)进行了比较。实验结果表明,CsxH3-xPW12O40/TiO2的光催化活性高于母体CsxH3-xPW12O40和P25。CsxH3-xPW12O40/TiO2的较高光催化活性源自此复合材料的光吸收特性、表面物理化学性质、表面酸性以及CsxH3-xPW12O40和TiO2之间的协同作用。然后,利用沉淀法合成了一系列Dawson型酸式钨磷酸铯盐CsxH6-xP2W18O62(x = 1.5、2.0、2.5、3.5、4.5和6.0)和Keggin型酸式钨磷酸铯盐CsxH3-xPW12O40(x = 1.0、1.5、2.0、2.5和3.0),并通过紫外-可见光谱、红外光谱、X射线粉末衍射、X射线光电子能谱以及吸附测定等表征手段对它们的晶相结构和表面结构进行了表征。通过由生物平台分子乙酰丙酸合成双酚酸的反应,系统地研究了CsxH6-xP2W18O62的酸催化活性,并与母体CsxH3-xPW12O40及传统酸催化剂HCl、HZSM-5和MCM-49进行了比较。除此之外,还对催化剂对反应分子的吸附行为以及影响酸催化活性的诸多因素如溶剂、催化剂用量、反应物之间的摩尔比、反应温度、搅拌速度以及反应时间进行了深入的研究。通过对以上两类多酸盐的催化性能的研究,发现在无溶剂条件下对于合成双酚酸的反应,Cs1.5H4.5P2W18O62和Cs2.5H0.5PW12O40在Dawson型多酸盐及Keggin型多酸盐中分别具有最高的催化活性;另外,Dawson型多酸盐CsxH6-xP2W18O62的催化活性和选择性均高于Keggin型多酸盐CsxH3-xPW12O40。这两类催化剂的不同催化活性源自于其具有不同的催化行为,文中对引起催化行为差异的原因进行了解释。最后,采用非离子表面活性剂(P123)为结构导向剂,通过溶胶-凝胶和程序升温溶剂热等方法,制备了新型介孔结构二氧化硅负载型双缺位钨硅酸盐[(n-C4H9)-4N]4[γ-SiW10O34(H2O)2]/SiO2复合材料,其中,双缺位钨硅酸盐的担载量为4.3-14.8%。通过红外光谱、拉曼散射、低(高)角度X射线粉末衍射、31Si固体核磁共振光谱、吸附测定以及高分辨透射电镜等表征手段对所合成的复合材料进行了表征。结果表明,双缺位钨硅酸盐与载体二氧化硅网络连接形成复合材料后,其基本的Keggin结构仍然保留,而且与载体二氧化硅之间通过W-O-Si共价键相结合,从而保证双缺位钨硅酸盐分子与载体之间牢固结合;另外,此复合材料具有三维交联孔结构,表现出优异的表面物理化学性质如大比表面积、高孔体积、较大孔径以及催化活性点位均匀分散在载体中。通过苯乙烯的环氧化反应对[(n-C4H9)4N]4[γ-SiW10O34(H2O)2]/SiO2的氧化催化活性进行探究,其中使用H2O2(30%)做为氧化剂,发现此类复合材料对苯乙烯环氧化反应具有较好的催化活性。催化过程中,对影响催化活性的诸因素如溶剂、苯乙烯和H2O2的摩尔比及双缺位钨硅酸盐的担载量等因素进行了研究,并对决定[(n-C4H9)4N]4[γ-SiW10O34(H2O)2]/SiO2氧化催化活性的主要原因进行了合理解释。