【摘 要】
:
合成生物学被现代生物学家们称为“第三次生物科学革命”,人工合成基因被应用于生物检测、医疗健康和DNA介质信息存储等广泛的领域。目前,不管是市面上已经成熟的第一代柱式合成仪,还是新兴的第二代芯片式合成仪,由于反应效率低、错误率高的原因,将合成产物的长度限制在200 nt以内。当前发展迫切需要基于第二代芯片式DNA合成,研究短片段DNA序列的原位组装技术,结合合成产物的高效扩增、纠错与测序等操作,为开
论文部分内容阅读
合成生物学被现代生物学家们称为“第三次生物科学革命”,人工合成基因被应用于生物检测、医疗健康和DNA介质信息存储等广泛的领域。目前,不管是市面上已经成熟的第一代柱式合成仪,还是新兴的第二代芯片式合成仪,由于反应效率低、错误率高的原因,将合成产物的长度限制在200 nt以内。当前发展迫切需要基于第二代芯片式DNA合成,研究短片段DNA序列的原位组装技术,结合合成产物的高效扩增、纠错与测序等操作,为开发集合成、组装、纠错、测序等技术一体化的新一代DNA合成仪器奠定基础。本文针对课题组研究的基于微阵列合成芯片的DNA合成仪,设计了原位合成组装体系,根据微阵列合成芯片设计原位组装芯片,选择聚合酶循环组装方法,将小片段寡核苷酸单链组装成较长双链DNA片段,研究了基于原位组装芯片的聚合酶循环组装反应效率的影响因素,优化了反应条件。本文完成的具体工作包括:(1)通过分析微阵列合成芯片所合成寡核苷酸链的结构与长度,选择聚合酶循环组装方法。依据聚合酶循环组装原理,开展聚合酶循环组装预实验,通过凝胶电泳检测组装结果的片段长度,探究能够实现聚合酶循环组装的最低寡核苷酸浓度。利用浓度为5 n M~25 n M的37个40 nt的寡核苷酸片段和1个20 nt的寡核苷酸片段,组装成760 bp的绿色荧光蛋白基因目标序列。(2)根据微阵列合成芯片所合成寡核苷酸链的产量和空间分布特性,设计制作原位组装芯片,研究温度对组装芯片中聚合酶循环组装反应效率的影响,优化组装芯片中聚合酶循环组装的温度控制程序,并研究寡核苷酸浓度对组装芯片中聚合酶循环组装反应效率的影响。(3)采取点样的方式在硅基材质表面构建寡核苷酸微阵列,模拟微阵列DNA合成芯片的合成产物,并利用该寡核苷酸微阵列开展寡核苷酸链的原位组装实验,检验利用聚合酶循环组装芯片进行DNA原位组装的可行性,探究混合机制对原位组装实验反应效率的影响。分别实现了平板玻璃表面和深硅刻蚀微孔侧壁上的寡核苷酸阵列的原位PCA组装,获得了760 bp绿色荧光蛋白基因片段。
其他文献
旋转激光测量系统作为一种典型的大尺寸分布式测量系统,已广泛应用于飞机、船舶制造等先进制造领域。测量系统中发射站的转速均匀性是影响其测量性能的关键因素,以往对发射站转速缺乏深入的理论分析与实验研究,而在系统测角性能评价方面也以整机评价为主,缺乏基于转速或者更底层信息的性能评价方案。本文建立了转速波动模型以分析瞬时转速波动对测角性能的影响,研究了发射站内部编码器信号包含的转速信息,给出了基于编码器信号
液体弹珠是一种将粒径为微米或纳米级的疏水颗粒包裹液体形成的软物质,由于其具有不润湿性、高弹性、低摩擦、蒸发缓慢、外部环境交互性等优良的物理性能,在近些年被广泛研究,并作为微型反应器、传感器和数字微流体平台应用于实际工程中,对液体弹珠的动态力学特性测量方法的研究有利于更好地指导实际应用。鉴于目前对液体弹珠弹性力学的研究主要在准静态条件下,且对运动摩擦力缺少系统的理论论述和实验证明,因此本文以动态压力
大尺寸空间坐标测量是航空、航天、船舶、汽车等先进制造业的基础支撑技术,在产品零部件装配、工业机器人定位、最终质量检测等领域中发挥着重要作用。以摄影测量、室内GPS为代表的分布式测量系统基于交会原理,可在保证高精度前提下灵活拓展量程,实现多目标并行测量,但存在设备数量较多、组网后不方便移动等问题;激光跟踪仪、激光雷达等全站式设备可独立工作,便于更换工作空间,但受到跟踪机构、测角原理限制,只能进行单点
提高水声探测灵敏度是水声领域一个重要研究方向。利用声学超材料,在声传播路径上使声波发生汇聚,可提高水声探测的灵敏度。水作为重质流体,与固体结构之间极易耦合,不同液固耦合条件下的声波调控是声学超材料研究的重要内容,COMSOL是主要研究软件。本文的主要工作包括:(1)研究了液固弱耦合条件下的声波汇聚。提出一种上下表面为硬声场边界、侧面为软声场边界的水腔狭缝理论模型并利用双板-单缝结构实现;结合经验公
为严格管控食品安全,国家对预包装食品标签进行了严格规定,其中生产日期是重要的安全信息。在软包装材料产线上普遍使用喷墨或热转印式打码机打印生产日期,由于机器故障以及包装材料行进过程中的偏移、振动等因素,可能出现错印、漏印、字符断裂、油墨污染等印刷缺陷。针对此类印刷缺陷,传统的检测方法为人工观察,效率低且无法客观度量检测标准。为提高产线自动化水平,量化字符印刷质量,本文针对常见的生产日期印刷缺陷,研究
现代制造业对大尺寸零件设备的测量要求不断提高。激光跟踪多边法具有灵活和精度高等优点,可以为大齿轮等工业零件的生产制造提供技术支撑,在大尺寸测量领域有广阔的应用前景。本课题针对激光跟踪多边异步测量方法展开研究。异步测量法仅凭一台激光跟踪仪就可以实现多边测量,降低了测量成本。整个测量过程借助三坐标测量机完成,通过测针和靶镜的更换,避免了被测物体对测量激光的遮挡问题。此外,将优化标定点引入测量过程中,减
随着“中国制造2025”、“工业4.0”等智能制造理念的快速推广,航空、航天、轨交、电子等先进工业制造领域正经历新一轮产业升级,不但对工业产品制造的外形尺寸、性能质量提出了更高要求,对产品可靠性、生产效率、安全性等运行品质要求也在不断提高。在此背景下,对上述领域产品在运行、运动状态下进行基于大尺寸高密度点云的高精度、实时三维形貌测量已成为迫切需求。传统基于面阵相机图像传感的视觉测量方式受到器件制造
润滑油金属屑末检测技术可准确获得机械设备磨损信息,已成为机械设备健康状态监测与故障诊断的重要手段。电感型传感器具有结构简单、可区分铁磁与非铁磁屑末、漏检率低等优点,已获得广泛应用。然而受环境噪声、振动干扰与油液气泡等影响,该类型传感器还存在检测灵敏度较低、抗振动干扰能力弱以及气泡易被误检等问题。为此,本文聚焦金属屑末传感模型构建、传感器线圈参数优化、屑末参数检测算法等关键技术,研制了三线圈型润滑油
室内空间测量定位系统(workshop Measurement Positioning System,w MPS)是一种基于时间-空间转换测量思想的多站式大尺寸并行测量系统。在多站交会测量中,发射站所发射的旋转激光面被视为理想的平面,然而现有研究证实其与理想平面间存在一定的偏差,此偏差在大尺寸空间中影响系统的测量性能。针对上述激光面的偏差,本文进行了以下工作:1、分析了大尺寸线结构激光面变形的误差
对叶尖间隙进行准确高速的在线测量是维持高速旋转机械设备安全稳定运行的关键,同时也是实现叶尖间隙控制、提高设备性能的基础。基于叶尖定时原理的双光束叶尖定时间隙测量法在保持传统光纤测量法灵敏度高、分辨率高、适用范围广和温度不敏感等优点的同时,提高了光纤测量法的有效测量范围和抗干扰能力。但双光束法依靠转速同步传感器获取叶片速度,无法排除转速波动的影响,且传感器参数难以通过传统叶尖定时信号模型进行分析。针