保护广义正交的算子相关问题的研究

来源 :哈尔滨理工大学 | 被引量 : 0次 | 上传用户:szw_jlcc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在内积空间中,保持正交性的线性算子必是一个线性等距的常数倍。一个很自然的问题是,这个结论在一般的赋范线性空间中是否成立。对保持某种广义正交性的线性算子会使我们对此种广义正交性的性质乃至它对空间性质的影响有一个更深入的研究。   首先,本文回顾了各种广义正交性的概念、有关广义正交性的性质、不同种广义正交性之间的关系,保持广义正交的线性算子的已有结论与广义正交有关的内积空间的特征性质。   其次,本文介绍了赋范线性空间上的双线性形式、反范数、半内积和上、下半内积的定义,给出了依范数正交和Birkhoff正交、Lumer正交与Birkhoff正交之间的关系。   作为本文的主要结论,我们利用反范数给出两个Minkowski平面间线性等距的一个特征性质,证明了一个线性算子T是线性等距的当且仅当Tx的反范数等于x的反范数;一个保持Lumer正交的线性算子必是某个线性等距的常数倍。
其他文献
细分曲面方法是近年来出现的一种新型的离散型造型技术方法,即为通过预先设定的细分规则运用到初始控制网格而产生曲线曲面的方法。细分曲面方法不仅具备B样条曲面的仿射不变
基于内容的图像检索技术是一门新兴的技术,相对于传统检索方式有着巨大的优势,在许多领域有极其广阔的应用前景。至今,基于内容的图像检索依然是一个非常热门的研究领域并取得了
令N表示全体非负整数集合,设整数h≥2及集合A(∈)N,若每个充分大的整数n皆可表为A中h个元素的和,则称集合A为h阶渐近基.若集合A是h阶渐近基且其任意真子集均不是h阶渐近基,则称集
分枝过程和生灭过程是概率论中两个经典且非常活跃的研究领域,它们不仅自身具有重要的理论意义,而且还有着十分广泛的应用背景。本文的研究内容主要包括随机环境中的分枝模型和
学位
运用奇异积分方程方法,本文首先研究了骨单位密质骨含单个曲线微裂纹平面问题,得到了该问题的一般解所满足的奇异积分方程组.作为数值算例,分别研究了密质骨含径向微裂纹和圆
寻求非线性随机发展方程的精确解,在非线性科学研究中具有非常重要的意义,也是一项意义深远的工作.本文主要研究了若干Wick-型随机发展方程,得到了它们形式丰富的精确解,其中
非线性微分一差分方程不仅在工程技术、自动控制以及航天卫星等尖端领域中有着重要的应用,而且在计算机科学、人口动态学和经济金融等领域也已成为不可缺少的数学工具.其中,
由于数学物理反问题在医学成像、无损探伤、气象预报等领域有着越来越广泛的应用,因此反问题受到更多学者的关注。反问题大都具有不适定的特点,该特点也是反问题研究的难点所
量子群作为代数学研究的重要分支,近些年来,它的相关理论受到人们的广泛关注.2002年由王顶国教授等引进的量子群Uq(f(K,H))是泛包络代数U(sl2)量子化Uq(sl2)的自然推广.本论文基