【摘 要】
:
轴承是机床系统中不可分割的一部分,但由于配合面的直接接触所产生的接触力与摩擦力会诱发磨损,从而降低机床和轴承系统的寿命。而磁悬浮轴承通过可控磁力实现转子的悬浮,避免了接触所带来的机械磨损,同时可以通过测量转子在机床加工过程的振动偏差并进行主动抑制。这种无摩擦、无接触和可进行主动控制的优点使得磁悬浮轴承在交通、机械工业和航天领域有着广泛的应用前景。磁悬浮轴承系统是典型的机电一体化设备,融合了机械学、
论文部分内容阅读
轴承是机床系统中不可分割的一部分,但由于配合面的直接接触所产生的接触力与摩擦力会诱发磨损,从而降低机床和轴承系统的寿命。而磁悬浮轴承通过可控磁力实现转子的悬浮,避免了接触所带来的机械磨损,同时可以通过测量转子在机床加工过程的振动偏差并进行主动抑制。这种无摩擦、无接触和可进行主动控制的优点使得磁悬浮轴承在交通、机械工业和航天领域有着广泛的应用前景。磁悬浮轴承系统是典型的机电一体化设备,融合了机械学、控制理论、电磁学及计算机科学等多门学科技术。磁悬浮轴承系统本身是开环且不稳定的复杂系统,非线性、强耦合的特性给控制器的设计带来了困难,控制器的设计是一直是研究的热点和难点。本文以安装在立式铣床上的电磁主轴作为研究对象,详细研究了主动磁悬浮轴承系统的各组成部分的特性。基于等效磁路的方法,通过机理建模得到磁悬浮轴承单自由度的数学模型,并将得到的非线性模型进行线性化处理。在此基础上建立磁悬浮轴承的径向四自由度数学模型,分析了有无转速和结构参数不对称性情况下的耦合特性。进一步设计前馈解耦控制器将耦合的系统解耦成四个独立的单自由度系统,显著降低了系统参数在线辨识的计算复杂度,方便后续控制器设计。针对解耦后的单自由度系统,设计模型参考自适应控制方法,以此构建了磁悬浮轴承的闭环控制系统。与传统的PID控制方法进行了比较,在不损失控制精度的前提下,实验证明了模型参考自适应控制方法取得了更好的暂态性能。最后,采用TMS320F28377作为核心芯片,提出了数字集成控制器的总体方案,着重介绍了电源模块、位移采样电路、电流采样电路以及电流驱动电路的设计。并在所搭建的实验平台上对主动磁悬浮轴承进行了悬浮和旋转实验,验证了所设计的控制方法和控制系统的有效性。本文的研究内容为后续嵌入主动控制的磁悬浮轴承系统在复杂曲面切削加工、离心泵的振动抑制等工业应用中奠定基础,具有深远意义。
其他文献
原子钟是迄今为止最精确的时间基准设备,为国际原子时报数提供时间基准。根据钟跃迁频段不同,原子钟划分为微波钟和光钟两种类别。为建设高精度的时间频率标准,本课题组正在开展基于量子逻辑技术的镁-铝离子光钟研究。我们完成了离子囚禁系统、光路系统以及控制系统的设计,搭建了铝离子光钟实验平台,并成功探测到量子逻辑跃迁信号和钟跃迁信号。在该背景下,本论文展开了光钟闭环锁定和稳定度优化的研究,主要完成工作如下所述
第一部分单中心1840例直肠癌前切除患者吻合口漏情况分析目的:比较直肠癌前切除术后不同严重程度吻合口漏患者的临床病理特征。方法:回顾性收集2014年1月至2019年12月华中科技大学同济医学附属协和医院外科行直肠癌前切除患者临床病理资料,根据患者吻合口漏严重程度分组。采用卡方检验、单因素方差分析比较不同严重程度吻合口漏患者临床病理特征。结果:1840名直肠癌前切除患者纳入研究,138例患者发生术后
中国“2030年碳达峰、2060年碳中和”目标的提出加速了各行业的全面低碳转型,发电行业首当其冲。碳交易机制作为推动社会低碳转型的重要力量也愈受关注。但我国碳市场还不成熟,从发展的视角看应积极引入碳期货等创新性产品,以实现碳价格对企业减排的实质性激励。文献调研显示,在评估碳期货的引入对企业减排、行业低碳转型的影响方面,还存在较大的研究空白。作为首批纳入全国碳市场的行业,发电行业未来也有望成为首先进
脉冲强磁场作为一种揭示物质未知现象和效应的极端实验环境,被广泛应用于物理、化学、生物等领域的前沿科学研究中。脉冲强磁场的产生是一项挑战极限的强电磁工程技术,复杂性高、技术难度大。为了满足前沿科学研究的发展需求,磁场波形与磁体结构形式正在日趋多样化,磁场参数向更高磁场强度、更长持续时间、更稳磁场波形以及更高重复频率等方向发展,亟需建设高水平的脉冲强磁场装置。而控制系统作为脉冲强磁场装置核心组成部件之
结构轻量化是目前船体建造的主要方向之一,而高强钢薄板在其中扮演了十分重要的角色。切割工艺作为焊接生产必经的首道工序,切割的质量与效率将会直接影响船体建造的质量与效率。板材在切割过程中由于受热不均匀产生的残余应力和变形,会对后续的建造工艺特别是焊前装配精度造成严重影响,这点在薄板切割上体现尤为明显。本文使用典型的热切割工艺—火焰切割,以Q550钢薄板为研究对象,采用试验与有限元数值模拟相结合的方法,
二维磁性材料因为具有一系列不同于块材和薄膜的物理特性,以及易于进行电气控制和化学功能化等优点,有望进一步推动基础物理学相关理论的发展以及磁性材料在二维自旋电子学、片上光通信和量子计算等新技术领域发挥关键作用。而二维磁性材料想要得到真正的应用,寻找并可控制备具有高居里温度(TC)和稳定性等优异磁学性能的二维材料是至关重要的。铬基碲化物作为室温铁磁体的理想候选材料,受到了人们的极大关注。在这个背景下,
近年来,光纤激光器由于其结构紧凑、输出稳定、散热性好和成本低等优点,在工业、医疗、科研等领域得到了广泛的应用。随着激光光场调控技术的发展,全光纤的轨道角动量(Orbital angular momentum,OAM)激光器成为了热门研究方向。OAM是一种具有螺旋相位分布且光场的中心强度为零的特殊光束,由于其独特的性质,在光通信、高分辨成像、光镊、材料加工等领域有着巨大的应用潜力。目前,OAM激光器
为了提高飞机能源利用率、降低维护成本、减少排放量,多电/全电飞机的概念应运而生。起动/发电技术作为多电飞机的关键技术之一,可以减小电源系统体积与重量,提高系统功率密度。开关磁阻电机具有结构简单、成本低、可靠性高、适应高速、高温等恶劣工况、电动发电状态灵活切换等特点,使其特别适用于航空高压起动/发电系统中,近年来受到广泛的关注与研究。随着多电飞机进一步发展,机上用电需求不断增大,而目前国内开关磁阻起
拓扑物态作为一种全新的量子物态具有许多新奇的性质。例如,拓扑绝缘体是一类具有非平庸拓扑性质(Z2)的新型量子材料,其内部绝缘,但在表面上存在着一种无能隙的、自旋与动量锁定的狄拉克型能带结构。并且其拓扑量子数对缺陷并不敏感,这种鲁棒性提供了各种的应用可能。在拓扑绝缘体之后,拓扑半金属,拓扑超导体等更多新奇的物态被预言和发现。本论文的工作主要基于FeSe这一铁基超导材料,从电子结构层面来研究其拓扑性质
随着脸书、微博等社交媒体的发展和普及,人们逐渐习惯在这些平台上分享自己的看法,这些观点能够通过社交网络快速扩散并影响到他人。如何在新媒体中最大程度地发挥个人的影响力具有重要意义。目前,大部分影响力最大化的研究旨在查询静态图中影响力最大的节点集合,但是,现实世界中的图是不断动态变化的。此外,现有研究没有考虑不同查询之间的相互影响,而实际上人们倾向于进行多次查询。如何在影响力不断变化的基础上,考虑多次