【摘 要】
:
原子钟是迄今为止最精确的时间基准设备,为国际原子时报数提供时间基准。根据钟跃迁频段不同,原子钟划分为微波钟和光钟两种类别。为建设高精度的时间频率标准,本课题组正在开展基于量子逻辑技术的镁-铝离子光钟研究。我们完成了离子囚禁系统、光路系统以及控制系统的设计,搭建了铝离子光钟实验平台,并成功探测到量子逻辑跃迁信号和钟跃迁信号。在该背景下,本论文展开了光钟闭环锁定和稳定度优化的研究,主要完成工作如下所述
论文部分内容阅读
原子钟是迄今为止最精确的时间基准设备,为国际原子时报数提供时间基准。根据钟跃迁频段不同,原子钟划分为微波钟和光钟两种类别。为建设高精度的时间频率标准,本课题组正在开展基于量子逻辑技术的镁-铝离子光钟研究。我们完成了离子囚禁系统、光路系统以及控制系统的设计,搭建了铝离子光钟实验平台,并成功探测到量子逻辑跃迁信号和钟跃迁信号。在该背景下,本论文展开了光钟闭环锁定和稳定度优化的研究,主要完成工作如下所述:1.在“四点锁定”前提下,完成磁场展宽、死区时间对光钟稳定度噪声贡献项的理论计算,指出在现有实验室条件下镁-铝离子光钟的量子投影噪声极限为4.5×10-15/(?),迪克效应为 4.6×10-16/(?)。2.通过建模仿真分析,从减小超稳激光迪克效应和光钟量子投影噪声两个方面着手,优化镁-铝离子光钟稳定度。实现三阶拉曼边带冷却实验系统的建模仿真,表明一阶、二阶、三阶交替拉曼边带冷却可以提高离子冷却效率,减小死区时间,进而达到抑制迪克效应的目的。定量分析平均振动声子数和拉比跃迁频率的关系,指出三维拉曼边带冷却可以提升量子逻辑谱信噪比,提高钟跃迁态判断准确度,进而达到减小量子投影噪声的目标。为实现三维拉曼边带冷却,完成基于ARTIQ的部分实验控制系统模块升级及功能优化,获得纳秒级响应精度的新控制系统。3.完成光钟闭环锁定原理验证实验。包括闭环锁定方案设计、程序编写、实验实现三个方面。通过两点锁定的方式,先后完成微波频段和光频段离子跃迁的闭环锁定,25Mg+离子微波共振跃迁锁定稳定度为2.8× 10-7/(?),27Al+离子3P1态跃迁锁定稳定度为 2.2×10-12/(?)。上述工作为课题组实现光钟跃迁的线宽压窄和闭环锁定打下了基础。
其他文献
肉品是人类餐桌上的必需品,随着人口数量的增加,人类对肉品的需求也逐渐增多。目前,肉品分割和检测环节仍有部分工序为人工密集型工种,随着科技的发展,自动化流水线正在逐渐代替人工,新冠疫情的爆发更是加速了肉品分割行业加工检测的无人化进程。然而肉品等为天然物品,纹理复杂,个体差异性特征显著,油脂等缺陷与本体颜色接近,使得自动化检测存在一定挑战。本文以自动化生产线上分割鸡胴体得到的翅尖、翅中、翅根、鸡胸自动
腐蚀是海洋工程材料应用过程中面临的巨大问题,而在金属中超过20%的腐蚀是由微生物造成的,因此微生物腐蚀不容忽视。为了减少工程材料受微生物腐蚀的影响,研发新型抗微生物腐蚀的涂层材料是一项重要课题。铁基非晶涂层是一种兼具优异耐蚀性能与耐磨性能的新型表面涂层材料,在海洋工程领域展现出诱人的应用前景。然而,目前有关铁基非晶涂层的腐蚀行为研究主要集中在常规环境,有关微生物环境下铁基非晶涂层的腐蚀性能与腐蚀机
研究背景近现代外科手术的快速发展和手术量的增加使得术后疼痛的患者群体逐渐增多,但现今的术后疼痛管理仍然不是最理想的。全世界每年接受手术的患者中有将近10%发展为慢性术后疼痛,这其中有部分可能是由于术后急性疼痛管理不充分所导致。目前,阿片类药物仍然是临床急性术后疼痛管理中最主要的药物,但是恶心,呕吐等副作用大大限制了患者的依从性,且有药物滥用的风险。因此临床上亟需新的镇痛方法。河豚毒素(tetrod
硅基光传感器凭借着工艺成熟、性能稳定、造价低廉等优势在探测领域被广泛使用,但是在重要的紫外光区域由于硅的吸收强度增大,加剧了光生载流子在表面的复合速率而使其探测响应不尽人意。利用稀土离子的下转换荧光效应将紫外光转化为响应度更高的可见光是一种比较有效的解决办法。本文根据Tb4O7掺杂浓度的不同制备了一系列Na PO3-Ba F2-Al F3-Ca F2体系氟磷酸盐玻璃(简称NBAC玻璃)。除了掺杂浓
研究背景:缺血性脑梗塞是中枢神经系统最常见疾病之一,具有发病率高、致残率高、死亡率高和经济负担重等特点,严重危害患者的健康生活水平,制约社会经济的快速发展[1]。目前,组织型纤溶酶原激活剂(rt PA)是唯一被美国食品药品管理局批准用于治疗急性缺血性脑梗塞的溶栓药物,但其有效治疗时间窗局限于发病4.5小时以内,而超过这一时间窗的rt PA溶栓治疗,将会明显增加出血性转化(HT)风险,加重脑卒中患者
文字是人类最早记录的信息之一,也是人类开始相互沟通交流的标志之一。自然场景文字是现代社会各种场景中不同信息的载体。因此,检测定位出自然场景文字对于人类社会活动来说有着重要的意义。在实际生产生活中,自然场景文本检测应用广泛,如智能工厂、车牌识别和证件识别等。基于文字信息的重要性,学界早在上个世纪就已经开始了相关的研究。深度学习兴起后,场景文字检测领域也涌现出了大量优秀的研究来解决场景文本检测问题。然
面对化石能源的日益匮乏,以光伏为代表的可再生能源发展迅猛。并网逆变器作为光伏系统电能转换的核心器件,在未来大规模光伏并网的应用场景,决定着光伏发电的质量。光伏并网逆变器的性能优化成为了学者们的研究重点,特别是随着新一代半导体的发展,开关器件频率大幅度提高,大功率逆变器的共模电压问题备受关注。论文以多模块并联逆变器拓扑为对象,对并网逆变系统相关技术做出研究,并对共模电压,环流等难点问题做出进一步优化
证照自动识别设备广泛应用于机场、码头、车站、酒店等场所,现有设备常用普通面阵相机实现证照成像,存在成像距离长、设备体积大等缺点。鱼眼摄像头焦距短、视角大,可有效减小成像距离,进而减小证照识别设备的体积。采用双鱼眼摄像头可进一步减小成像距离,实现证照识别设备的小型化,但存在图像畸变、图像配准和图像融合等问题,本文针对以上问题开展了相关技术研究。首先,针对鱼眼摄像头成像的几何畸变问题,研究了基于棋盘格
腔光力学是将光学微腔与机械振子结合起来研究光场和机械振子之间相互作用的前沿学科。近年来,得益于微纳加工工艺的巨大进步,光学微腔品质因子不断提高,模式体积越来越小,腔光力学得到快速发展,在基态冷却、基础物理、声子激光以及弱力传感等方面应用广泛。与此同时,奇异点光力学系统的性质和应用近年备受关注,显示出巨大的发展潜力。奇异点特殊的物理机制产生了手性激光、快慢光转换以及非互易光学传输等很多新奇的物理效应