论文部分内容阅读
伺服系统是一种输出能够快速而精确地响应外部的输入指令信号的控制系统。随着微处理器技术、现代电力电子技术、高性能控制理论以及电机永磁材料制造工艺的发展,人们对伺服控制产品的性能、功能及性价比要求也越来越高。采用基于DSP数字信号处理芯片的电机控制控制理论,其主要原理就是将电机的一些运行状态,比如电机的各相电流,电机的转速的模拟量转变为数字量,将这些数字量在DSP数字处理芯片进行实时快速的运算,将这些运算结果反馈给电机控制器对电机进行实时、准确、高效的控制。以数字信号处理技术为基础、以永磁同步电机为执行电机、采用高性能控制策略的全数字化永磁同步交流伺服控制系统必将成为伺服控制系统发展的趋势。永磁同步电机控制的难点是,其电流是三相交变的,不能象直流电机一样靠简单的改变电流的大小来对电机实施控制。在研究了各种方法以后,本文决定运用德国工程师FBlaschke等人首先提出感应电机的磁场定向控制理论(即矢量控制)来解决该问题,该理论的思想是通过空间矢量变换方法实现电机磁通和转矩分量的解耦控制。通过这种方法,能使三相电流能象直流电一样进行研究。这样,永磁同步电机就能象直流电机一样进行控制了。本文详细研究了永磁同步交流电机的矢量控制理论,分析了永磁同步交流电机的数学模型,阐述了电压空间矢量脉宽调制(SVPWM)的原理、算法。随后研究了TMS320F2812的工作原理并阐述了空间矢量脉宽调制在TMS320F2812平台上的实现方法。本文给出了组成系统的各部分硬件和软件的设计方案。并根据设计方案做出系统实物,在矢量控制理论的基础上用TMS320F2812实现了对永磁同步交流伺服电机的电流、速度和位置的三环控制,实现了预期的设计目标,最后给出实验结果分析。本文所设计的另一个特点就是处理全数字化。本文运用TI公司生产的TMS320F2812对电机的反馈信号进行量化和数字处理,并且以数字的方式对电机控制器进行控制。这样做的好处不易受外界条件的干扰,取得较好的控制效果。在开发过程中,全数字化的处理方式更加直观,在对设计进行改动时只需做软件上的修改,具有模拟控制没有的优势。