论文部分内容阅读
Turbo码由于其译码性能接近Shannon极限,成为信道编码领域的重点研究码型,并被广泛的应用于无线通信系统中。目前,Turbo码已被LTE-Advanced标准所采用作为信道编码方式,同时也被应用于物联网,图像的加密传输以及深空通信中。在Turbo码译码器进行硬件实现时,由于译码器通常是采用迭代方式进行译码,会对存储单元进行频繁的访问造成较大的功率损失。其中,对状态度量缓存(State Metric Cache,SMC)的访问造成的功率损失占到译码器总体功率消耗的一半以上。因此,对于功率受限的无线通信系统中,Turbo码译码器的功耗成为了重要的问题。为了解决这个问题,满足低功耗无线通信系统的设计要求,一种低存储容量的Turbo码译码器结构设计成为了重要的研究内容。本文以LTE-Advanced标准下的Turbo码为研究对象。首先,对Turbo码的编码方法和译码原理进行介绍。其次,对最大后验概率(Maximum A Posteriori,MAP)算法以及它的改进算法进行理论推导和分析。然后,根据改变状态度量存储方式的设计思路,提出了基于线性估算的Turbo码译码器结构设计方案。通过在传统的结构中插入一个排序模块和增量计算模块,将计算出的增量比特和位置比特进行存储,来代替对前向状态度量的存储。结果表明,该设计方案使得SMC容量降低了55%。在上述的基于线性估算的Turbo码译码器结构设计中,虽然减少了SMC容量达到了降低功耗的目的,但是SMC容量还可以进一步降低;并且对状态度量的处理是有损压缩过程,使得误码率(Bit Error Rate,BER)和误包率(Packet Error Rate,PER)性能有一定的损失,同时该译码结构的并行程度不够。因此,本文根据反向计算的设计思路,提出了一种基于反向蝶形计算的Turbo码译码器结构设计方案。在该设计方案中,将传统的编码网格图分成四个独立的蝶形单元,不在存储所有的前向状态度量,只需要存储符号比特和不能反向计算的状态度量。该设计方案使得SMC容量的降低了65%,并且BER和PER性能与对数域最大后验概率(Maximum A Posterior Probability Algorithm in Logarithmic Domain,Log-MAP)算法非常接近。论文最后对基于反向蝶形计算的译码器结构设计进行了深入的研究和探讨,然后在Quartus II 13.0软件平台中,采用Verilog硬件描述语言(Hardware Description Language,HDL),对该设计结构进行编程实现,并使用PowerPlay Early Power Estimator和ModelSim进行功耗测试和译码时间分析。结果表明,在硬件资源使用方面,与传统的译码器结构相比,该译码器结构总的内存量降低了35.62%;在功耗和译码时间方面,在200MHz的工作频率下,总功耗较传统的译码器结构降低了15.38%,同时译码时间较线性估算的译码器结构减少了45.45%。因此,本文所设计的Turbo码译码器在保持较好的译码性能的同时功耗也得到了有效的降低。