论文部分内容阅读
人脸是人类视觉中最常见的模式,人脸识别由于其自然、直观、非接触、安全、快捷等特点而倍受关注,已经成为最具发展潜力的生物特征识别技术之一,也是当前模式识别和人工智能领域的一个研究热点。但是,由于人脸结构的复杂性、人脸表情的多样性以及人脸成像过程的多变性等原因,人脸机器自动识别至今仍然被公认是一个具有挑战性的研究领域。一般认为,人脸从某种意义上来说是一种流形结构,人脸数据集是由某些内在变量控制形成的非线性流形,只要能从流形中寻找出光照、表情和姿态等控制变量,就能大幅降低观测空间的维数。流形学习是近年来机器学习及模式识别等领域的一个研究热点,其主要目标是去发现高维观察数据空间的低维光滑流形。自从2000年Roweis和Saul提出LLE算法、Tenenbaum等人提出Isomap算法,特别是Donoho等人发现Isomap算法能够准确发现人脸图像流形潜在的参数空间、张长水等人将LLE算法用于人脸识别并取得了较好的识别效果之后,基于流形学习的人脸识别研究引起了人们的广泛关注。本文对流形学习在人脸识别的应用问题进行了广泛而深入的探讨,提出了2种新的基于流形学习的人脸识别算法,通过仿真实验验证了它们的有效性。主要工作和创新成果集中在以下几个方面:1.简要介绍了流形学习研究中涉及的相关数学知识,如拓扑流形、微分流形、黎曼流形、测地线、Hausdorff距离等,为本文的研究提供理论支持。2.构建模型、搭建实验平台,将主流流形学习算法应用于线性与非线性数据集进行仿真实验,系统分析其应用的可能性、优势及存在的问题。①线性流形学习算法数据仿真实验:主成分分析(PCA)、线性判别分析算法(LDA)、局部保距投影(LPP);②非线性流形学习算法的数据仿真实验:等距映射(ISOMAP),局部线性嵌入算法(LLE)、Laplacian特征映射(LE)、局部切空间排列(LTSA)。3.针对流形学习算法未能充分利用样本的类别信息,一般不适合用于分类,不能有效的消除图像中冗余信息;Isomap算法需要较多的训练样本来描述非线性流形结构,而人脸识别本身是一个小样本问题,通常训练样本不是很多,进而影响了识别效果的问题,本文提出了一种新的人脸识别算法——Gabor+鉴别性等距映射算法,并在公开人脸数据库中验证了算法的有效性。4.LTSA算法是著名的流形学习算法之一。但如果在模式识别时遇到相似的流形,两种流形相似的模型放在一起就构成了复杂流形,这时就很难用LTSA算法加以分类。针对这个问题,本文提出了一种新的人脸识别算法——鉴别性局部切空间排列算法,并在公开人脸数据库中验证了算法的有效性。