论文部分内容阅读
随着科学技术和现代工业的飞速发展,机械、能源、石化、运载和国防等行业的设备日趋大型化、高速化、集成化和自动化。随之而来的是对设备运行的安全性与可靠性的要求不断加大,从而使得相应的维修策略从传统的事后维修和定期维修向视情维修转变。然而目前大部分系统及设备还是以定期维修为主,这种方式不仅耗费资源而且效率低下。因此,有必要研究故障预测与健康管理技术以实现系统的视情维修。故障预测与健康管理技术在近些年得到越来越多的关注、研究与应用,已经成为可靠性领域的热点研究方向。其中故障预测是故障预测与健康管理的基础与核心内容。如果能够预测复杂工程系统中故障发展的趋势,确定部件或系统的剩余使用寿命,就可以综合当前的经济、设备等各种因素制定出最优的维护策略,从而保障复杂工程系统的安全性与可靠性。本课题从复杂工程系统对故障预测与健康管理技术的需求出发,以全面提升复杂工程系统的安全性和可靠性为目的。重点对复杂工程系统的健康状态评估和剩余使用寿命预测方法展开了理论研究与应用验证,力求为实现复杂工程系统的视情维修提供重要的决策支撑。本文的主要研究内容包括以下几个方面:(1)针对复杂工程系统退化状态难以观测和故障严重程度难以辨识的问题,提出了健康指标构建、健康状态识别以及安全等级评估的一体化及可视化方案。为构建能有效反应复杂工程系统健康状态退化趋势的健康指标,提出了基于深度置信网络的无监督健康指标构建方法。基于构建的健康指标,利用左右型连续隐马尔可夫模型实现健康状态的准确识别。然后,提出了基于健康指标和健康状态识别结果的模糊综合安全等级评估方法,实现了复杂系统安全等级的有效评估。最后,设计了故障预测可视化平台,以方便直观、及时地反映出系统当前的健康和安全状况。(2)针对复杂工程系统结构复杂、参数众多、强非线性的特点,提出了一种数据和模型相结合的剩余使用寿命预测策略。首先基于所提出的能够提取细粒度特征和粗粒度特征的深度循环神经网络进行健康退化趋势的准确识别。然后基于健康指标构建退化模型的状态方程。最后结合粒子滤波算法进行系统剩余使用寿命的预测。此外,针对粒子滤波算法存在的粒子退化现象进而导致预测结果不准确的问题,提出了利用条件变分自动编码器来改进粒子滤波算法的方法,实现了粒子滤波算法预测效果的提升。(3)针对复杂工程系统变量耦合、故障多源多征兆的问题,提出了多故障模式下的故障识别与剩余使用寿命预测框架。为识别出多个故障的退化趋势,提出了可以精准提取系统退化特征的间隙测度深度置信网络。然后,分离出多个故障类型的退化特征,并基于支持向量描述对每一个故障类型进行建模描述。最后,对当前故障类型进行退化建模并利用粒子滤波算法预测出剩余使用寿命的估计值与置信区间,实现多故障模式下的故障识别与剩余使用寿命预测。