论文部分内容阅读
氮(N)沉降已经成为全球面临的环境问题之一。已有研究发现,N沉降会显著改变生态系统物质循环过程,尤其是土壤温室气体释放速率,从而对全球气温产生影响。但是,关于N沉降如何通过改变土壤性质和植物根系分泌物特征影响土壤微生物数量和结构,进而影响根际和非根际土壤温室气体释放的过程和机制尚不是十分清楚。对此,本论文以黄土高原人工油松林为研究对象,以6年多水平N添加实验(0、3、6、9 g N m-2 y-1)为基础,通过野外样品采集、室内测定、室内孵育实验并结合代谢组学与微生物组学等方法,系统分析了N添加对油松不同径级细根(极细细根,<0.5 mm;中等细根,0.5-1 mm;较粗细根,1-2 mm)化学组分、呼吸速率、分泌物特征、土壤化学性质、微生物特征和温室气体释放的影响。主要结果如下:(1)随着N添加水平增加,油松不同径级细根呼吸速率都有先增加后减小的变化趋势。1°C、14°C和18°C条件下,分别在3、9和6 g N m-2 y-1处理中呼吸速率达到最大值(1.37、3.79和4.38μmol CO2 g–1 s–1)。此外,呼吸速率随着细根径级增加逐渐降低,并且不同径级细根呼吸对N添加的响应相同。不同径级细根化学组分含量有显著差异(P<0.05),表现为碳(C)、可溶性糖、淀粉含量以及C/N比值随细根径级增加而增加,N和磷(P)含量随细根径级增加而减少。N添加显著提高了细根N、P、可溶性糖和淀粉含量,并且在6或9 g N m-2 y-1处理中有最大值。此外,较粗细根P含量、可溶性糖含量以及C/N比值对N添加的响应比极细细根更敏感。相关性分析结果表明,细根N和P含量是影响呼吸速率最重要的因素。(2)油松细根分泌物有500余种,大多属于脂肪酸、碳水化合物、醇类和烷基胺类物质。其中,极细细根分泌物相对含量高于其它径级细根,以有机酸、脂肪酸和脂肪等26种分泌物占优势。较粗细根也能产生一定的分泌物,以碳水化合物、醇类和烷基胺类物质的相对含量较高。总体而言,N添加对细根分泌物产生了促进作用,大多数分泌物在6或9 g N m-2 y-1处理中有最大值。由N添加处理造成的差异分泌物主要是有机酸、氨基酸、碳水化合物和脂肪酸类物质。通过偏最小二乘判别分析发现极细细根分泌物含量在不同N添加处理之间变化最大,而较粗细根分泌物的变化次之。(3)N添加对根际和非根际土壤化学性质影响有所差异。低N提高而高N降低了非根际土壤有机碳(SOC)、N、铵态氮(NH4+)和硝态氮(NO3-)含量。非根际土壤P含量显著提高,并在9 g N m-2 y-1处理中有最大值。N添加提高了根际土壤NO3-含量,降低了P含量,而SOC、N、NH4+含量先增加后减小在6 g N m-2 y-1处理中有最大值。极细细根根际土壤化学性质对N添加的响应比较粗细根敏感。(4)根际土壤微生物拷贝数平均高于非根际土壤56.5%,极细细根根际土壤细菌拷贝数平均高于较粗细根根际土壤58.5%,较粗细根根际土壤真菌拷贝数平均高于极细细根根际土壤41.9%。非根际土壤真菌多样性高于根际土壤,而细菌多样性在两种土壤之间差异不明显。随细根径级增加真菌和细菌多样性有增加趋势。根际和非根际土壤的优势物种存在差异,其中在非根际土壤中占优势的微生物种类多。低N促进而高N抑制土壤细菌拷贝数和多样性,在3或6 g N m-2 y-1处理中有最大值(拷贝数,68.70×107 g soil-1)。N添加对土壤真菌拷贝数有抑制作用,对真菌多样性有促进作用,在6或9 g N m-2 y-1处理中分别有最小值和最大值(拷贝数,30.69×106 g soil-1)。不同N添加中有不同优势物种,总体而言6或9 g N m-2 y-1处理中优势物种最多。根际和非根际土壤微生物对N添加的响应存在差异。较粗细根根际土壤和非根际土壤微生物数量、细菌多样性对N添加的响应比极细细根敏感。而在优势物种方面,N添加造成的极细细根根际土壤差异微生物最多,较粗细根根际土壤的差异微生物最少。根系分泌物对根际微生物变化的解释度高于土壤化学性质。N添加通过影响根系分泌物产量(极细细根和较粗细根分泌物量减少,中等细根分泌物量增加)提高根际土壤微生物数量和多样性。原因是极细和较粗细根中有机酸和脂肪酸类物质含量高,而中等细根分泌物含量少有关。非根际土壤中,N添加具有通过降低土壤养分含量减少微生物数量和多样性的作用路径。(5)N添加处理导致根际和非根际土壤二氧化碳(CO2)释放和甲烷(CH4)吸收速率显著加快,在6或9 g N m-2 y-1处理中有最大值(CO2,623.15 mg C kg soil-1;CH4,1794.49μg C kg soil-1)。N添加抑制了土壤氧化亚氮(N2O)释放,在9 g N m-2y-1处理中有最小值(48.63μg N kg soil-1)。N添加处理中三种温室气体增温潜力值(GWP)平均增加了16.94%,并且在根际和非根际土壤中都存在。不同径级细根根际土壤和非根际土壤CO2和N2O释放对N添加响应类似。但是,根际土壤CH4吸收快于非根际土壤,极细细根根际土壤CH4吸收快于较粗细根根际土壤,并且极细细根根际土壤CH4吸收对N添加的响应比较粗细根根际土壤敏感。N添加对极细细根和中等细根根际土壤温室气体释放有强烈的直接促进作用。而在较粗细根根际土壤中N添加通过提高土壤养分含量促进温室气体释放。非根际土壤中,N添加总体上对温室气体释放也有直接促进作用。油松根系层级变化特性不仅在细根生理指标中存在,也在根际土壤中存在,且不同径级细根根际土壤和非根际土壤对N添加的响应有所差异。全球N沉降可能通过加快森林土壤温室气体释放,提高增温潜力,并且根际和非根际土壤的变化机制有所差异。结果表明,加强植物根际研究对揭示土壤温室气体释放具有重要意义。