【摘 要】
:
容错控制(FTC)是一门新兴的交叉学科,其理论基础包括统计数学、现代控制理论、信号处理、模式识别、最优化方法、决策论等,与其息息相关的学科有故障检测与诊断、鲁棒控制、自适应控制、滑模控制、智能控制等。它研究的是系统发生故障时的控制问题,涉及领域比较广泛,如人工智能、计算机科学、自动化科学及相关生产领域等。具体讲就是在设备发生故障之前或故障发生之后,根据检测的故障信息,针对不同的故障源和故障特征,采
论文部分内容阅读
容错控制(FTC)是一门新兴的交叉学科,其理论基础包括统计数学、现代控制理论、信号处理、模式识别、最优化方法、决策论等,与其息息相关的学科有故障检测与诊断、鲁棒控制、自适应控制、滑模控制、智能控制等。它研究的是系统发生故障时的控制问题,涉及领域比较广泛,如人工智能、计算机科学、自动化科学及相关生产领域等。具体讲就是在设备发生故障之前或故障发生之后,根据检测的故障信息,针对不同的故障源和故障特征,采取相应的容错控制措施,保证设备正常运转。容错控制具有使系统的反馈对故障不敏感的作用。它的研究和应用,不仅将有效地提高相关工业生产领域的自动化水平,也将为控制理论与人工智能等学科的结合,提供新的生长点。实现容错控制是提高动态系统可靠性的有效手段。近年来关于动态系统的容错控制研究在理论上已渐趋完善并已得到了实际应用。但总的来讲有待研究的问题还很多。本文主要研究基于观测器的Markov跳变系统和非线性离散系统的容错控制问题。1.Markov跳变系统(MJS)的研究一直是学术界关注的热点。但关于MJS的控制问题的相关研究大多假设转移概率完全已知。本文针对Markov跳变线性系统讨论转移概率一般的情况,即转移概率部分已知的情况,同时这里的Markov跳变系统带有执行器故障。首先,对转移概率情况进行明确,即完全已知、未知但其上下界信息可用,以及完全未知的三种情况。第二,利用迭代的方法对系统设计学习观测器,同时估计系统状态和故障。第三,基于设计完成的学习观测器设计容错控制律,确保系统的渐进稳定性。最后,对比研究,表明方法的可行性与有效性。2.离散系统观测器设计问题的研究成果相对比较少。本文讨论带传感器故障的非线性离散时间系统观测器和容错控制器的设计问题。首先,为实现状态和故障的同时估计,利用变换将原系统变化为广义系统,并用广义系统的理论知识判断系统的可观测性。其次,在滑模控制理论的基础上对广义系统设计PD滑模观测器,观测增广状态向量。第三,设计容错控制器。最后,给出数值例子验证方法的有效性。
其他文献
可充电锂离子电池被认为是未来大规模应用中最有前途的储能装置之一,包括便携式电子设备、电动汽车和电网。然而,使用易燃液态电解质的传统锂离子电池可能会导致严重的安全问题,如电解液泄漏、热失控、燃烧和爆炸等。固态电池被认为是解决这些问题的最佳选择之一,消除了电解液泄漏带来的问题,提高了安全可靠性。此外,使用固态电解质(SSEs)可以获得更高的能量密度,特别是采用锂金属作为负极,它具有最高的理论容量(38
随着目前大数据与人工智能技术的快速发展,传统机械制造业的逐渐转型是必然趋势。轴承作为旋转机械设备中最为典型的部件之一,它的运行状态对旋转机械设备的正常运行至关重要。因此,开展轴承的故障诊断研究具有重要的理论和实际意义。传统的轴承故障诊断研究大多是基于振动信号进行时频域特征提取来完成诊断任务,而在实际的工厂车间中,因存在高腐蚀和高温等恶劣环境,导致仅通过接触式采集的振动信号不能满足轴承的故障诊断需求
随着经济的发展,人们对玻璃的需求越来越多,质量要求也越来越高。但目前国内绝大多数生产厂家仍然采用人工检测的手段,从而导致生产效率低下,成本高昂及质量控制不严格等问题的出现。在本文中,利用图像处理技术对平面玻璃缺陷进行自动检测。本文以平板玻璃为被检测对象。本文研究的表面缺陷主要包括划伤缺陷、气泡缺陷以及爆边缺陷,提取各种缺陷的特征参数,用来作为评定平板玻璃是否合格的重要指标,实现自动、实时、准确的缺
事业单位人员年度考核工作是人事管理中的一项重要工作,对于激励先进,推动形成干事创业的良好氛围具有重要作用。机构改革在增强事业单位活力的同时,也给重新组建的事业单位在人员年度考核工作的开展带来困扰。现以某事业单位2020年度人员考核工作为例,探索具体可行的考核办法。基本情况2020年下半年,因机构改革,由职能相近的9个事业单位新组建设立某单位(以下称该单位),为县级事业单位。基于该单位承担的职
自第二次工业革命以来,大量化石能源燃烧造成的大气中温室气体CO2浓度剧烈上升引起了包括全球极端气候频发,生态大改变,物种灭绝等一系列灾难。为了遏制地球大气中的CO2浓度进一步上升,以CO2为碳源合成高附加值药物分子的合成路径吸引了科研界的广泛关注。其中,胺类化合物的甲酰化和甲基化反应因其产物在药物中的广泛应用而被广泛研究。针对目前该领域中依旧存在的催化剂易分解、制备繁琐、腐蚀性强以及催化剂回收,产
金属氧化物半导体气体传感器具有灵敏度高、制作成本低廉、响应速度较快、使用寿命长等优点,已被广泛应用在环境监测、工业制造、人身安全和医疗诊断等各个领域。氧化锌(Zn O)具有3.37 e V宽禁带、60 me V大激子结合能、高电子迁移率、优异的化学和热稳定性等特性,是应用广泛的金属氧化物气敏材料之一。然而,传统的Zn O气体传感器一般需要在高于300℃的温度下工作,室温下难以恢复,灵敏度低,限制了
全无机卤化物钙钛矿材料溴铅铯(CsPbBr3)因为其卓越的光学和电子特性而被认为是最具有潜力的下一代核辐射探测器材料。CsPbBr3具有相对较大的禁带宽度、较高的有效原子序数、较大的载流子迁移率寿命积和较大电阻率等优秀特性,因而受到了广泛的关注。本文主要研究了CsPbBr3单晶制备工艺的优化及CsPbBr3光电探测器的探测性能。首先,我们采用化学共沉淀法合成CsPbBr3多晶粉体作为晶体生长的原料
相变存储器作为一种新型的非易失性存储器,具有存储密度大、操作速度快、数据保持时间长、抗辐射性能好等诸多显著的优点,被认为是最有可能取代Flash的下一代主流存储器。相变存储器在走向实际应用过程中,存在的最大问题,即编程电流过大,导致单元的功耗很大。所以,降低相变单元的编程电流就显得格外重要。目前,降低单元编程电流主要从两个方面考虑:一是从相变材料的角度考虑;二是从单元的界面热工程角度考虑。本文从界
环境污染和能源危机是当今世界面临的两大严峻挑战,废水污染被认为是主要的环境污染之一。然而,废水的处理技术受到成本和能源的限制。微生物燃料电池(Microbial Fuel Cell,MFC)作为一种可再生、成本低和清洁环保的废水处理和产能技术,最大的优势是在处理废水的同时可以产生电能。但MFC发展和应用受到较高的阴极过电位,较慢的污染物降解速率和较低功率输出的限制。其中,较高的阴极过电位是主要限制
教育部要求每年对所有在校大学生进行体质健康测试,体能素质对个人健康非常重要,同时体测成绩也是课程成绩的一部分。长跑作为体能测试的必测项目之一,通常要求体育老师使用秒表来进行人工掐表计时,根据人眼辨识运动员是否冲线来停止计时,从而得出比赛成绩。这种计时方法需要耗费大量精力,而且当多名学生在非常接近的时间内到达终点线时,老师很难精确地记录每位运动员的最终成绩。人工掐表方法受主观因素影响大,同时时间精度